intel.

Intel® Quartus® Prime Standard
Edition User Guide

Design Compilation

Updated for Intel® Quartus® Prime Design Suite: 18.1

This document is part of a collection - Intel® Quartus® Prime Standard Edition User Guides -
Combined PDF link

@ Online Version 683283
C] Send Feedback UG-20176 2018.09.24

https://www.intel.com/programmable/technical-pdfs/qps-ugs.pdf
https://www.intel.com/programmable/technical-pdfs/qps-ugs.pdf
https://www.intel.com/content/www/us/en/docs/programmable/683283.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

t I Contents
INtel
Contents
1. Intel® Quartus® Prime Incremental Compilation for Hierarchical and Team-Based
0 LT o | o 7
1.1. About Intel® Quartus® Prime Incremental Compilation........ovevvvieiiiieiiiiiiniieereieeee, 7
1.2. Deciding Whether to Use an Incremental Compilation FIOW........c.covviiiiiiiiiiiicicea 7
1.2.1. Flat Compilation Flow with No Design Partitions..........cccoviviiiiiiiiiiiiiiieeea 7
1.2.2. Incremental Compilation Flow With Design Partitions...........ccccooiiiiiiiiiiinnnnnn, 8
1.2.3. Team-Based Design Flows and IP DeliVery.......ccoooeiiiiiiiiiiiii e 11
1.3. Incremental Compilation SUMMANYo e 13
1.3.1. Incremental Compilation Single Intel Quartus Prime Project Flow.................... 13
1.3.2. Steps for Incremental Compilation.......covviiiiiiiiii 13
1.3.3. Creating Design Partitions.......cviiiiiiiii i 14
1.4. Common Design Scenarios Using Incremental Compilation..........ccovviiiiiiiiiiiiiiiiinnnnns 15
1.4.1. Reducing Compilation Time When Changing Source Files for One Partition....... 15
1.4.2. Optimizing a Timing-Critical Partition...........ccoooiiiiii e 16
1.4.3. Adding Design Logic Incrementally or Working With an Incomplete Design....... 17
1.4.4. Debugging Incrementally With the Signal Tap Logic Analyzer..............cocvivens 18
1.4.5. Functional Safety IP Implementation........cccoiiiiiiiiiiiiii e 19
1.5. Deciding Which Design Blocks Should Be Design Partitions..........ccooviiiiiiiiiiiiiennnnn, 26
1.5.1. Impact of Design Partitions on Design Optimization.............cccooviiiiiiiiinnnnne. 29
1.5.2. Design Partition Assignments Compared to Physical Placement Assignments.... 30
1.5.3. Using Partitions With Third-Party Synthesis ToOIS........c.covvviiiiiiiiiiieens 30
1.5.4. Assessing Partition QUality......ccoiiiiiiiiii e 31
1.6. Specifying the Level of Results Preservation for Subsequent Compilations.................... 32
1.6.1. Netlist Type for Design Partitions........ccviiiriiiiiiiiii i ee e 33
1.6.2. Fitter Preservation Level for Design Partitions.........c.cooviiieieiiiiiiiiiiiieeens 34
1.6.3. Where Are the Netlist Databases Saved?.........ccoiiiiiiiiiiii s 34
1.6.4. Deleting Netlists. ..o e 35
1.6.5. What Changes Initiate the Automatic Resynthesis of a Partition?.................... 35
1.7. Exporting Design Partitions from Separate Intel Quartus Prime Projects...............cc.vues 37
1.7.1. Preparing the Top-Level DeSigN......c.viuiiiiiiiiiiiiii i na e 39
1.7.2. Project Management— Making the Top-Level Design Available to Other
3= [0 1= 40
1.7.3. EXPOrting Partitions.ouieiiiii e 42
1.7.4. Viewing the Contents of a Intel Quartus Prime Exported Partition File (.gxp).... 43
1.7.5. Integrating Partitions into the Top-Level Design........coccviiiiiiiiiiiiiiiiciie e 43
1.8. Team-Based Design Optimization and Third-Party IP Delivery Scenarios..........c.ccvvvunnns 46
1.8.1. Using an Exported Partition to Send to a Design Without Including Source
B S et 46
1.8.2. Creating Precompiled Design Blocks (or Hard-Wired Macros) for Reuse............ 47
1.8.3. Designing in @ Team-Based ENVIrONMENT........coouiiiiiiiiiiiiii e 49
1.8.4. Enabling Designers on a Team to Optimize Independently..........cooviviiiininnnnn. 51
1.8.5. Performing Design Iterations With Lower-Level Partitions............ccocoeviviinennnn. 54
1.9. Creating a Design Floorplan With LogicLOCk REGIONS.....c.vvviiiiiiiiiiiiii i neaaas 56
1.9.1. Creating and Manipulating LogicLoCK RegIONS.......cevviiriiiiiiiiiiiiii e 57
1.9.2. Changing Partition Placement with LogicLock Changes..........cccccviiiiiieininnnnns 57
1.10. Incremental Compilation RestrictionS........covviiiiiiii e 58
1.10.1. When Timing Performance May Not Be Preserved Exactly.............cocvvvvennenn. 58

Intel Quartus Prime Standard Edition User Guide: Design Compilation

2

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Contents I n te I
®

1.10.2. When Placement and Routing May Not Be Preserved Exactly..............c.cevnenn. 58
1.10.3. Using Incremental Compilation With Intel Quartus Prime Archive Files........... 59
1.10.4. Formal Verification SUPPOIT. ... et e e e e 59
1.10.5. Signal Probe Pins and Engineering Change Orders..........ccoeviiiiiiiiiiiiineinennns 59
1.10.6. Signal Tap Logic Analyzer in Exported Partitions..........cocooiviiiiiiiiiiieiinnns 60
1.10.7. External Logic Analyzer Interface in Exported Partitions..............ccccvvviininen. 60
1.10.8. Assignments Made in HDL Source Code in Exported Partitions...................... 61
1.10.9. Design Partition Script LimitationS........cccoviiiiiiiii e 61
1.10.10. Restrictions on IP Core PartitionsS.........cooviiiiiiiiiiiii e 63
1.10.11. Restrictions on Intel Arria® 10 TranSCeIVEI......vuuvviiiiiiiieeiieii e eaeeenns 63
1.10.12. Register Packing and Partition Boundaries.........c.ccviviiiieiieiiiniiii e 63
1.10.13. I/O Register Packing......c.cvuviiiiiiiiiniiiii e 64
B B R S Y o1 [T 8 0 o) o o 64
1.11.1. Tcl Scripting and Command-Line EXamples.....cocvviiiiiiiiiiiiiiiiiniie e 64
1.12. Document ReViSiON HiStOrYo e 69
2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments....... 71
2.1. About Incremental Compilation and Floorplan AssSignments........ccvovveiiiiiiiiiniiiieinennns 71
2.2. Incremental Compilation OVEIVIEW. ...ciuiiii i i e r e e r e aaaaas 71
2.2.1. Recommendations for the Netlist Type......ccouiiiiiiiii e 72
2.3. Design Flows Using Incremental Compilation..........cooeiiiiiiiiiiiiiin e 73
2.3.1. USiNG Standard FIOW.oueiuiiiiiii ittt s e e e e e e e e e 73
2.3.2. Using Team-Based FIOW......ciiriiiiiii i i e aaeas 73
2.3.3. Combining DesSign FIOWS. . .ciuiiuiieiiiiiiiiiieie it e en e aaaa e nenaans 73
2.3.4. Project Management in Team-Based Design FIOWS.........ccoviiiiiiiiiiiiiinnniene, 74
2.4. Why Plan Partitions and Floorplan AsSignmentS?........ouiiiieiiiiiiie e ae e 75
2.4.1. Partition Boundaries and Optimization...........cocoiiiiiiiiiii e 75
2.5. Guidelines for Incremental Compilation.......c.ccoviiiiiiiiii e 78
2.5.1. General Partitioning GUIAEliNES.ciiiiiiiiii i e 78
2.5.2. Design Partition GUIdeliNgS......viriiiiiiii i 80
2.5.3. Consider a Cascaded Reset StruCture........coovivviiiiiiiiiiii e 92
2.5.4. Design Partition Guidelines for Third-Party IP Delivery.........c.cooiiiiiiiiiienenns 93
2.6. Checking Partition QUality......ocveiniiiiiii e 97
2.6.1. Incremental Compilation AdViSOr......c.oviuiiiiiiiiiiii e 98
2.6.2. Design Partition Planmer......ciiei it e 98
2.6.3. Viewing Design Partition Planner and Floorplan Side-by-Side...............cccvvies 100
2.6.4. Partition Statistics REPOIt....coiiiiiii i e 101
2.6.5. Report Partition Timing in the Timing Analyzer.........ccooiiiiiiiii e 101
2.6.6. Check if Partition Assignments Impact the Quality of Results........................ 101

2.7. Including SDC Constraints from Lower-Level Partitions for
Third-Party IP DeliVery ...t et e e e e e eeeas 102
2.7.1. Creating an .sdc File with Project-Wide Constraints........c.cccvvviiiiiniiiiiinnnnnns 103
2.7.2. Creating an .sdc with Partition-Specific Constraints...........ccoveiiiiiiiiiinnnn. 104
2.7.3. Consolidating the .sdc in the Top-Level Design......c.ccviviiiiiiiiiiiiii e 105
2.8. Introduction to Design FIOOrPIanS.cv e e e e e neeeas 106
2.8.1. The Difference between Logical Partitions and Physical Regions.................... 106
2.8.2. Why Create @ Floorplan?.....coviiiii it e e 107
2.8.3. When to Create @ Floorplan. . ooviii i e e e e 108
2.9. Design Floorplan Placement GUIdeliNgS......ciiiiiiiiiiiii i e e 109
2.9.1. Flow for Creating @ Floorplan......ccviuiiiiiiiiii i naeaaas 109
2.9.2. Assigning Partitions to LOgicCLOCK REGIONS.cueiuiiiiiiiiie e 110
D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

3

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

t I Contents
INtel

2.9.3. How to Size and Place REGIONS.ciiiieiiriitiitieieieie e e s e neseeennans 110

2.9.4. Modifying Region Size and Origin.......oivieiiiiiiiiiiiieseiie e saeae e eneraeneans 111

B2 T N I @ I @0 o =T o o T 112

2.9.6. LogicLock ReSOUICe EXCIUSIONS. .. uuiiiiiiiiiie ittt e e e e 112

2.9.7. Creating Non-Rectangular REGIONS.........coiviiiiiiiiiiiiii e 114

2.10. Checking FIoorplan QUality....ooeiiiiiii i e e aes 114

2.10.1. Incremental Compilation AdViSOr......ciiiiiiiiiiiii i e 115

2.10.2. LogicLock Region Resource Estimates.......cvviiiiiiiiiiiiiiii i ienaene e 115

2.10.3. LogicLock Region Properties Statistics Report.........coovieieiiiiiiiiii e 115

2.10.4. Locate the Intel Quartus Prime Timing Analyzer Path in the Chip Planner..... 115

2.10.5. Inter-Region Connection BUunNdIes.........cciiiiiiiiiiiiiiiiii e 115

2.10.6. Routing Utilization.......oouiiiii e e 115

2.10.7. Ensure Floorplan Assignments Do Not Significantly Impact Quality of Results115

2.11. Recommended Design Flows and Application EXamples........ccoviiiiiiiiiiiiiiiiiinennns 116

2.11.1. Create a Floorplan for Major Design BIOCKS.ccccvuiuiiiiiiiiiiiiieieie e 116

2.11.2. Create a Floorplan Assignment for One Design Block with Difficult Timing.... 117

2.11.3. Create a Floorplan as the Project Lead in a Team-Based Flow..................... 117

2.12. Document ReViSion HiStOrY . it it e e s e s aae e ane e saaeaaneannns 118

3. Intel Quartus Prime Integrated Synthesis......c.ccociimiiriniirnrernsre i s s anases 120

0 0= T | o I 11 PP 120

3.1.1. Intel Quartus Prime Integrated Synthesis Design and Compilation Flow......... 122

G I - [oo [UF= Lo TSI 8] o s Lo o o PP 123

3.2.1. Verilog and SystemVerilog Synthesis Support.......cccoiviiiiiiiiiiiiiie e 124

3.2.2. VHDL Synthesis SUPPOt. . .uiiiiiiiii i e e e e enans 128

3.2.3. AHDL SUP PO ettt e 129

3.2.4. Schematic Design Entry SUPPOrt.... ..o 129

3.2.5. State Maching EditOr. ...oouiiiiiii i e aas 130

3.2.6. DESIGN LibrariEs. ittt e e 130

3.2.7. UsiNg Parameters/ GeNEIICS. ittt it it eea s 133

3.3, Incremental Compilation. . .ot i 137

3.3.1. Partitions for Preserving Hierarchical Boundaries.........c.cooviiieiiiiiiiiiiienenannns 137

3.3.2. Parallel SYNthesis. ..o 138

3.3.3. Intel Quartus Prime Exported Partition File as Source...........coovvviiiiniinnnnnns 138

3.4. Intel Quartus Prime Synthesis OptioNS.ccuiiiiiiiiiiii i eaas 139

3.4.1. Setting Synthesis OplioNS.viiiii i e e e 139

3.4.2. Optimization TeChNIQUE.....iiii i e 143

3.4.3. Auto Gated CloCK CONVEISION. . .ttt ittt aeneaaes 143

3.4.4. Enabling Timing-Driven Synthesis........coooiiiiiiiii e 145

3.4.5. SDC Constraint ProteCtion......ccvieiiiiii i e aae e 145

3.4.6. PowerPlay Power Optimization.....c.ooviiiiiii i e 145

3.4.7. Limiting Resource Usage in PartitionsS.......coooiiiiiiiiiiiiiii e 145

3.4.8. RESLrUCLUre MU DIEXEIS. . vttt e naaeaas 147

3.4.9. SYNthesis EffOrt....ociuii i 148

3.4.10. Fitter Intial Placement Seed........ccviiiiiiiii i ae 148

3.4.11. State Machine ProCeSSiNg.....ccuviviiiiiiiiiii e 148

3.4.12. Safe State Machine......oviriiiii i 152

3.4.13. POWEI-UP LEVEL ..t e e 153

G I T = oYV e U T o B T o 1 A - Y ol T 154

3.4.15. Remove Duplicate ReGISterS.ouiu e et ae s 154

3.4.16. Preserve Registers. ..o 154

Intel Quartus Prime Standard Edition User Guide: Design Compilation D Send Feedback

4

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Contents I n te I
®

3.4.17. Disable Register Merging/Don’t Merge Register........ccviviiiiiiiiiiiiiiieiieninnnns, 155

3.4.18. Noprune Synthesis Attribute/Preserve Fan-out Free Register Node.............. 156

3.4.19. Keep Combinational Node/Implement as Output of Logic Cell..................... 157

3.4.20. Disabling Synthesis Netlist Optimizations with dont_retime Attribute........... 158

3.4.21. Disabling Synthesis Netlist Optimizations with dont_replicate Attribute........ 158

3.4.22. Maximum Fan-OuUL.... ..o 159
3.4.23. Controlling Clock Enable Signals with Auto Clock Enable Replacement and

[LT =Tt =] =1 o] [160

3.5. Inferring Multiplier, DSP, and Memory Functions from HDL Code..........ccoovviviiiiiinennnns 161

3.5.1. Multiply-Accumulators and Multiply-Adders........cccooiiiiiiiiii e 161

G S 11 o T | =] (= =P 162

3.5.3. RAM @nd ROM. . ciiiiiiiiiii ittt et e r e e et e i r e e n e e e e a e e e e e e e e e es 162

3.5.4. Resource Aware RAM, ROM, and Shift-Register Inference............c.ccvvvvininnen. 163

3.5.5. Auto RAM to Logic Cell CONVEISION. . ..iitie ittt eiiaeie i irarene s saeaasneaaens 164

3.5.6. RAM Style and ROM Style—for Inferred Memory.....c.ccociiiviiiiii i 164

3.5.7. RAM Style Attribute—For Shift Registers Inference..........c.cooiiiiiiiiiiiiinnnns 166

3.5.8. Disabling Add Pass-Through Logic to Inferred RAMs no_rw_check Attribute.... 167

3.5.9. RAM Initialization File—for Inferred Memory.......c.coviiiiiiiiiiiii e 169

3.5.10. Multiplier Style—for Inferred Multipliers........cooiiiiiiiiiii e 170

3.5.11. FUll Case AttribULE. . vt e e 172

3.5.12. Parallel Case. . ettt 173

3.5.13. Translate Off and On / Synthesis Off and On..........cccoiiiiiiiiiiii e 174

3.5.14. Ignore translate_off and synthesis_off Directives..........ccccovvviiiiiiiiiinnnnnne. 175

3.5.15. Read CommeNnts @S HD L. ...iiviiiiiiiii i s n e e e e nneans 175

3.5.16. USE I/O FliPflOoPS. ettt et e e e e e 176

3.5.17. Specifying Pin Locations with chip_pin.....cccciiiiiiiii e 177

3.5.18. Using altera_attribute to Set Intel Quartus Prime Logic Options.................. 178

3.6. Analyzing SYNthesisS RESUITS. ... cuieiii it e e e e e aas 181

3.6.1. Analysis & Synthesis Section of the Compilation Report........c.cccoevvvvviinennnn. 181

3.6.2. Project Navigator. . ouuiii i e 181

3.7. Analyzing and Controlling Synthesis Messages.......ccvviiiiiiiiiiiiiii e 181

3.7.1. Intel QUArtus Prime MESSageS. . ittt ittt it it aeanaeas 182

3.7.2. VHDL and Verilog HDL MESSAgeS......ciuiuiuiiiiiniiieiiiie e sassenasaseesaes 182

3.8. Node-Naming Conventions in Intel Quartus Prime Integrated Synthesis..................... 185

3.8.1. Hierarchical Node-Naming ConventionS.......ccooviiiiiiiiiiiiiii e e 185

3.8.2. Node-Naming Conventions for Registers (DFF or D Flipflop Atoms)................ 186

3.8.3. Register Changes During Synthesis......cccoiiiiiiiiiiiiiiic e 186

3.8.4. Preserving Register Names. ...oviiuiiiiiiiiiiii i i e e e 188

3.8.5. Node-Naming Conventions for Combinational Logic CellS..........ccccvvviiiiennnnn. 189

3.8.6. Preserving Combinational Logic Names.cccouiiiiiiiiiiii e 190

GRS Yo g 0] o T IS 8] 0o o o A PP 190

3.9.1. Adding an HDL File to a Project and Setting the HDL Version..............ccvcvvn.e. 191

3.9.2. ASSIGNING @ PiN.ceiiiitii i e e 192

3.9.3. Creating Design Partitions for Incremental Compilation.............ccovviiiiinnn. 193

3.10. DocumeNnt ReVISION HiStOrY . ittt i e e e e e e st a e e eanaeeaas 193

4. Reducing Compilation TimMe . ioriioriererrersrs s s s s s s s s rssasssssassssnssnssssnsnssnsnnsnss 196

4.1. Compilation Time AQViSO . ..ttt a et an e e e e aare s 196

4.2. Strategies to Reduce the Overall Compilation Time.....c.coviiiiiiiiiiiiii e 196

4.2.1. Running Rapid RECOMPIIE. . .iuiiriiiiii e e ae e e 196

4.2.2. Enabling Multi-Processor Compilation..........coeiiiiiiiiiii e 197

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

5

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

I n te I Contents
®

4.2.3. Using Incremental Compilation........cvieiiiiiiiiiiiii i e ae e 198

4.2.4. Using Block-Based Compilation......ccoviiiiiiiiiiiiii s e 199

4.3. Reducing Synthesis Time and Synthesis Netlist Optimization Time...............c.ccovenene. 199
4.3.1. Settings to Reduce Synthesis Time and Synthesis Netlist Optimization Time... 199

4.3.2. Use Appropriate Coding Style to Reduce Synthesis Time........ccoccvvivvieiineinnnns 200

L S S X=Te [8 ol ool o F=Tor=T 0 1= T o ol I 0 1= PP 200
4.4.1. Fitter Effort SetliNg. . .cioiiiiii i e e 200

4.4.2. Placement Effort Multiplier SEettings......coooiiiiiiiiii i 200

4.4.3. Physical Synthesis Effort Settings........c.cooviiiiiiii e 201

4.4.4. Preserving Placement with Incremental Compilation............coooviiiiiinnne. 201

4.5. ReducCing ROULING TimMiE. .. .ueiieiiiii ittt e et e et e e s e e e nanes 201
4.5.1. Identifying Routing Congestion with the Chip Planner...........cccociiiiiiiiennnn, 201

4.6. Reducing Static Timing ANalysis TimME. . .ucuiiiiiiii i eneaeans 203

4.7. Setting ProCeSS Priority et e s 203

4.8. Reducing Compilation Time ReViSion HiStory........ccieieiiiiieiiii e 203

A. Intel Quartus Prime Standard Edition User GUides.......cccrverrimmrimrsmssamssimssnnsansasannnsas 205
Intel Quartus Prime Standard Edition User Guide: Design Compilation D Send Feedback

6

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

683283 | 2018.09.24 I t I
D Send Feedback I l e R

1. Intel® Quartus® Prime Incremental Compilation for
Hierarchical and Team-Based Design

1.1. About Intel® Quartus® Prime Incremental Compilation

This manual provides information and design scenarios to help you partition your
design to take advantage of the Quartus® II incremental compilation feature.

The ability to iterate rapidly through FPGA design and debugging stages is critical. The
Intel® Quartus® Prime software introduced the FPGA industry’s first true incremental
design and compilation flow, with the following benefits:

e Preserves the results and performance for unchanged logic in your design as you
make changes elsewhere.

e Reduces design iteration time by an average of 75% for small changes in large
designs, so that you can perform more design iterations per day and achieve
timing closure efficiently.

e Facilitates modular hierarchical and team-based design flows, as well as design
reuse and intellectual property (IP) delivery.

Intel Quartus Prime incremental compilation supports the Arria®, Stratix®, and
Cyclone® series of devices.

1.2. Deciding Whether to Use an Incremental Compilation Flow

The Intel Quartus Prime incremental compilation feature enhances the standard Intel
Quartus Prime design flow by allowing you to preserve satisfactory compilation results
and performance of unchanged blocks of your design.

1.2.1. Flat Compilation Flow with No Design Partitions

In the flat compilation flow with no design partitions, all the source code is processed
and mapped during the Analysis and Synthesis stage, and placed and routed during
the Fitter stage whenever the design is recompiled after a change in any part of the
design. One reason for this behavior is to ensure optimal push-button quality of
results. By processing the entire design, the Compiler can perform global
optimizations to improve area and performance.

You can use a flat compilation flow for small designs, such as designs in CPLD devices
or low-density FPGA devices, when the timing requirements are met easily with a
single compilation. A flat design is satisfactory when compilation time and preserving
results for timing closure are not concerns.

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel

Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any Iso
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the 9005":2015
application or use of any information, product, or service described herein except as expressly agreed to in Registered
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying

on any published information and before placing orders for products or services.

*QOther names and brands may be claimed as the property of others.

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

I n t e I 1. Intel® Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design
®

683283 | 2018.09.24

1.2.1.1. Incremental Capabilities Available When A Design Has No Partitions

The Intel Quartus Prime software has incremental compilation features available even
when you do not partition your design, including Smart Compilation, Rapid Recompile,
and incremental debugging. These features work in either an incremental or flat
compilation flow.

1.2.1.1.1. With Smart Compilation

Note:

In any Intel Quartus Prime compilation flow, you can use Smart Compilation to allow
the Compiler to determine which compilation stages are required, based on the
changes made to the design since the last smart compilation, and then skip any
stages that are not required. For example, when Smart Compilation is turned on, the
Compiler skips the Analysis and Synthesis stage if all the design source files are
unchanged. When Smart Compilation is turned on, if you make any changes to the
logic of a design, the Compiler does not skip any compilation stage. You can turn on
Smart Compilation on the Compilation Process Settings page of the Setting dialog
box.

Arria 10 devices do not support the smart compilation feature.

Related Information
Smart Compilation online help

1.2.1.1.2. With Rapid Recompile

The Intel Quartus Prime software also includes a Rapid Recompile feature that
instructs the Compiler to reuse the compatible compilation results if most of the
design has not changed since the last compilation. This feature reduces compilation
times for small and isolated design changes. You do not have control over which parts
of the design are recompiled using this option; the Compiler determines which parts of
the design must be recompiled. The Rapid Recompile feature preserves performance
and can save compilation time by reducing the amount of changed logic that must be
recompiled.

1.2.1.1.3. With Signal Tap Logic Analyzer

During the debugging stage of the design cycle, you can add the Signal Tap to your
design, even if the design does not have partitions. To preserve the compilation netlist
for the entire design, instruct the software to reuse the compilation results for the
automatically-created "Top" partition that contains the entire design.

1.2.2. Incremental Compilation Flow With Design Partitions

In the standard incremental compilation design flow, the top-level design is divided
into design partitions, which can be compiled and optimized together in the top-level
Intel Quartus Prime project. You can preserve fitting results and performance for
completed partitions while other parts of the design are changing, which reduces the
compilation times for each design iteration.

If you use the incremental compilation feature at any point in your design flow, it is
easier to accommodate the guidelines for partitioning a design and creating a floorplan
if you start planning for incremental compilation at the beginning of your design cycle.

Intel Quartus Prime Standard Edition User Guide: Design Compilation D Send Feedback

8

http://quartushelp.altera.com/current/index.htm#comp/comp/comp_tab_mode.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

683283 | 2018.09.24

1. Intel® Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design I n t e I
®

Incremental compilation is recommended for large designs and high resource densities
when preserving results is important to achieve timing closure. The incremental
compilation feature also facilitates team-based design flows that allow designers to
create and optimize design blocks independently, when necessary.

To take advantage of incremental compilation, start by splitting your design along any
of its hierarchical boundaries into design blocks to be compiled incrementally, and set
each block as a design partition. The Intel Quartus Prime software synthesizes each
individual hierarchical design partition separately, and then merges the partitions into
a complete netlist for subsequent stages of the compilation flow. When recompiling
your design, you can use source code, post-synthesis results, or post-fitting results to
preserve satisfactory results for each partition.

In a team-based environment, part of your design may be incomplete, or it may have
been developed by another designer or IP provider. In this scenario, you can add the
completed partitions to the design incrementally. Alternatively, other designers or IP
providers can develop and optimize partitions independently and the project lead can
later integrate the partitions into the top-level design.

Related Information

e Team-Based Design Flows and IP Delivery on page 11

e Incremental Compilation Summary on page 13

e Best Practices for Incremental Compilation Partitions and Floorplan Assignments
documentation on page 71

1.2.2.1. Impact of Using Incremental Compilation with Design Partitions

Table 1. Impact Summary of Using Incremental Compilation

Characteristic

Impact of Incremental Compilation with Design Partitions

Compilation Time Savings

Typically saves an average of 75% of compilation time for small design
changes in large designs when post-fit netlists are preserved; there
are savings in both Intel Quartus Prime Integrated Synthesis and the
Fitter. (1)

Performance Preservation

Excellent performance preservation when timing critical paths are
contained within a partition, because you can preserve post-fitting
information for unchanged partitions.

Node Name Preservation

Preserves post-fitting node names for unchanged partitions.

Area Changes

The area (logic resource utilization) might increase because cross-
boundary optimizations are limited, and placement and register
packing are restricted.

fuax Changes

The design’s maximum frequency might be reduced because
cross-boundary optimizations are limited. If the design is partitioned
and the floorplan location assignments are created appropriately, there
might be no negative impact on fyax-

(1) Intel Quartus Prime incremental compilation does not reduce processing time for the early
"pre-fitter" operations, such as determining pin locations and clock routing, so the feature
cannot reduce compilation time if runtime is dominated by those operations.

D Send Feedback

Intel Quartus Prime Standard Edition User Guide: Design Compilation

9

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Intel® Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design
® 683283 | 2018.09.24

1.2.2.2. Intel Quartus Prime Design Stages for Incremental Compilation

Figure 1. Design Stages for Incremental Compilation

System
Verilog VHDL AHDL Block EDIF VoM
HDL (wvhd) (1df) Design File Netlist Netlist
(sv) (bdf) (.edf) (vqm) |
T T T T T T -
Partition Top
Partition 1
Design Partition - Partition 2
. Ll
Assignments
Analysis & Synthesis m Settings &
Synthesize Changed Partitions, — Assignmens [
Preserve Others
One Post-Synthesis
Netlist per Partition
> Partition Merge

Create Complete Netlist Using Appropriate Source Netlists for Each
Partition (Post-Fit, Post-Synthesis, or Inported Netlist)

One Post-Fit
Netlist per Single Netlist for
Partition Complete Design

Fitter Floorplan
Place-and-Route Changed Partitions, ¢ Lf)catlon
Assignments
Preserve Others
Create Individual Netlists and -
Complete Netlists] Settings &]
Assignments
Single Post-Fit
Netlist for
Complete Design
[1
Assembler [—»{ Timing
in parallel Analyzer
I I
Requirements ™\, No Make Design &
Satisfied? - Assignment Modifications
(Program/Configure Device)
Note: When you use EDIF or VQM netlists created by third-party EDA synthesis tools,

Analysis and Synthesis creates the design database, but logic synthesis and
technology mapping are performed only for black boxes.

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

10

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Intel® Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design
683283 | 2018.09.24 ®

1.2.2.2.1. Analysis and Synthesis Stage

The figure above shows a top-level partition and two lower-level partitions. If any part
of the design changes, Analysis and Synthesis processes the changed partitions and
keeps the existing netlists for the unchanged partitions. After completion of Analysis
and Synthesis, there is one post-synthesis netlist for each partition.

1.2.2.2.2. Partition Merge Stage

The Partition Merge step creates a single, complete netlist that consists of
post-synthesis netlists, post-fit netlists, and netlists exported from other Intel Quartus
Prime projects, depending on the netlist type that you specify for each partition.

1.2.2.2.3. Fitter Stage

The Fitter then processes the merged netlist, preserves the placement and routing of
unchanged partitions, and refits only those partitions that have changed. The Fitter
generates the complete netlist for use in future stages of the compilation flow,
including timing analysis and programming file generation, which can take place in
parallel if more than one processor is enabled for use in the Intel Quartus Prime
software. The Fitter also generates individual netlists for each partition so that the
Partition Merge stage can use the post-fit netlist to preserve the placement and
routing of a partition, if specified, for future compilations.

1.2.2.2.4. How to Compare Incremental Compilation Results with Flat Design Results

If you define partitions, but want to check your compilation results without partitions
in a “what if” scenario, you can direct the Compiler to ignore all partitions assignments
in your project and compile the design as a "flat" netlist. When you turn on the
Ignore partitions assignments during compilation option on the Incremental
Compilation page, the Intel Quartus Prime software disables all design partition
assignments in your project and runs a full compilation ignoring all partition
boundaries and netlists. Turning off the Ignore partitions assignments during
compilation option restores all partition assignments and netlists for subsequent
compilations.

1.2.3. Team-Based Design Flows and IP Delivery

The Intel Quartus Prime software supports various design flows to enable team-based
design and third-party IP delivery. A top-level design can include one or more
partitions that are designed or optimized by different designers or IP providers, as well
as partitions that will be developed as part of a standard incremental methodology.

1.2.3.1. With a Single Intel Quartus Prime Project

In a team-based environment, part of your design may be incomplete because it is
being developed elsewhere. The project lead or system architect can create empty
placeholders in the top-level design for partitions that are not yet complete. Designers
or IP providers can create and verify HDL code separately, and then the project lead
later integrates the code into the single top-level Intel Quartus Prime project. In this
scenario, you can add the completed partitions to the design incrementally, however,
the design flow allows all design optimization to occur in the top-level design for
easiest design integration. Altera recommends using a single Intel Quartus Prime
project whenever possible because using multiple projects can add significant up-front
and debugging time to the development cycle.

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

11

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Intel® Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design
® 683283 | 2018.09.24

1.2.3.2. With Multiple Intel Quartus Prime Projects

Alternatively, partition designers can design their partition in a copy of the top-level
design or in a separate Intel Quartus Prime project. Designers export their completed
partition as either a post-synthesis netlist or optimized placed and routed netlist, or
both, along with assignments such as LogicLock™ regions, as appropriate. The project
lead then integrates each design block as a design partition into the top-level design.
Altera recommends that designers export and reuse post-synthesis netlists, unless
optimized post-fit results are required in the top-level design, to simplify design
optimization.

1.2.3.2.1. Additional Planning Needed

Teams with a bottom-up design approach often want to optimize placement and
routing of design partitions independently and may want to create separate Intel
Quartus Prime projects for each partition. However, optimizing design partitions in
separate Intel Quartus Prime projects, and then later integrating the results into a
top-level design, can have the following potential drawbacks that require careful
planning:

e Achieving timing closure for the full design may be more difficult if you compile
partitions independently without information about other partitions in the design.
This problem may be avoided by careful timing budgeting and special design rules,
such as always registering the ports at the module boundaries.

e Resource budgeting and allocation may be required to avoid resource conflicts and
overuse. Creating a floorplan with LogicLock regions is recommended when design
partitions are developed independently in separate Intel Quartus Prime projects.

e Maintaining consistency of assignments and timing constraints can be more
difficult if there are separate Intel Quartus Prime projects. The project lead must
ensure that the top-level design and the separate projects are consistent in their
assignments.

1.2.3.3. Collaboration on a Team-Based Design

A unique challenge of team-based design and IP delivery for FPGAs is the fact that the
partitions being developed independently must share a common set of resources. To
minimize issues that might arise from sharing a common set of resources, you can
design partitions within a single Intel Quartus Prime project or a copy of the top-level
design. A common project ensures that designers have a consistent view of the top-
level project framework.

For timing-critical partitions being developed and optimized by another designer, it is
important that each designer has complete information about the top-level design in
order to maintain timing closure during integration, and to obtain the best results.
When you want to integrate partitions from separate Intel Quartus Prime projects, the
project lead can perform most of the design planning, and then pass the top-level
design constraints to the partition designers. Preferably, partition designers can obtain
a copy of the top-level design by checking out the required files from a source control
system. Alternatively, the project lead can provide a copy of the top-level project
framework, or pass design information using Intel Quartus Prime-generated design
partition scripts. In the case that a third-party designer has no information about the
top-level design, developers can export their partition from an independent project if
required.

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

12

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Intel® Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design
683283 | 2018.09.24 ®

Related Information

e Exporting Design Partitions from Separate Intel Quartus Prime Projects on page
37

e Project Management— Making the Top-Level Design Available to Other Designers
on page 40

1.3. Incremental Compilation Summary

1.3.1. Incremental Compilation Single Intel Quartus Prime Project Flow

The figure illustrates the incremental compilation design flow when all partitions are
contained in one top-level design.

Figure 2. Top-Down Design Flow

| Perform Elaboration |

v

| Prepare Design for Incremental Compilation |

v

(Optional) Create Floorplan Location
Assignments using LogicLock Regions

v

Perform Complete Compilation
(All Partitions are Compiled)

v
| Make Changes to Design |<7

* Repeat as Needed
| Set Netlist Type for Each Partition | During Design, Verification,
* & Debugging Stages
Perform Incremental Compilation

(Partitions are Compiled if Required)

1.3.2. Steps for Incremental Compilation

For an interactive introduction to implementing an incremental compilation design
flow, refer to the Getting Started Tutorial on the Help menu in the Intel Quartus
Prime software.

1.3.2.1. Preparing a Design for Incremental Compilation

1. Elaborate your design, or run any compilation flow (such as a full compilation) that
includes the elaboration step. Elaboration is the part of the synthesis process that
identifies your design’s hierarchy.

Designate specific instances in the design hierarchy as design partitions.

If required for your design flow, create a floorplan with LogicLock regions location
assignments for timing-critical partitions that change with future compilations.
Assigning a partition to a physical region on the device can help maintain quality
of results and avoid conflicts in certain situations.

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

13

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Intel® Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design
® 683283 | 2018.09.24

Related Information
e Creating Design Partitions on page 14
e Creating a Design Floorplan With LogicLock Regions on page 56

1.3.2.2. Compiling a Design Using Incremental Compilation

The first compilation after making partition assignments is a full compilation, and
prepares the design for subsequent incremental compilations. In subsequent
compilations of your design, you can preserve satisfactory compilation results and
performance of unchanged partitions with the Netlist Type setting in the Design
Partitions window. The Netlist Type setting determines which type of netlist or source
file the Partition Merge stage uses in the next incremental compilation. You can choose
the Source File, Post-Synthesis netlist, or Post-Fit netlist.

Related Information
Specifying the Level of Results Preservation for Subsequent Compilations on page 32

1.3.3. Creating Design Partitions
There are several ways to designate a design instance as a design partition.

Related Information

Deciding Which Design Blocks Should Be Design Partitions on page 26

1.3.3.1. Creating Design Partitions in the Project Navigator

You can right-click an instance in the list under the Hierarchy tab in the Project
Navigator and use the sub-menu to create and delete design partitions.

1.3.3.2. Creating Design Partitions in the Design Partitions Window

The Design Partitions window, available from the Assignments menu, allows you to
create, delete, and merge partitions, and is the main window for setting the netlist
type to specify the level of results preservation for each partition on subsequent
compilations.

The Design Partitions window also lists recommendations at the bottom of the window
with links to the Incremental Compilation Advisor, where you can view additional
recommendations about partitions. The Color column indicates the color of each
partition as it appears in the Design Partition Planner and Chip Planner.

You can right-click a partition in the window to perform various common tasks, such
as viewing property information about a partition, including the time and date of the
compilation netlists and the partition statistics.

When you create a partition, the Intel Quartus Prime software automatically generates
a name based on the instance name and hierarchy path. You can edit the partition
name in the Design Partitions Window so that you avoid referring to them by their
hierarchy path, which can sometimes be long. This is especially useful when using
command-line commands or assignments, or when you merge partitions to give the
partition a meaningful name. Partition names can be from 1 to 1024 characters in
length and must be unique. The name can consist of alphanumeric characters and the
pipe (|), colon (:), and underscore (_) characters.

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

14

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Intel® Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design
683283 | 2018.09.24 ®

Related Information

Netlist Type for Design Partitions on page 33

1.3.3.3. Creating Design Partitions With the Design Partition Planner

The Design Partition Planner allows you to view design connectivity and hierarchy, and
can assist you in creating effective design partitions that follow Altera’s guidelines.

The Design Partition Planner displays a visual representation of design connectivity
and hierarchy, as well as partitions and entity relationships. You can explore the
connectivity between entities in the design, evaluate existing partitions with respect to
connectivity between entities, and try new partitioning schemes in "what if" scenarios.

When you extract design blocks from the top-level design and drag them into the
Design Partition Planner, connection bundles are drawn between entities, showing the
number of connections existing between pairs of entities. In the Design Partition
Planner, you can then set extracted design blocks as design partitions.

The Design Partition Planner also has an Auto-Partition feature that creates
partitions based on the size and connectivity of the hierarchical design blocks.

Related Information

Best Practices for Incremental Compilation Partitions and Floorplan Assignments
documentation on page 71

1.3.3.4. Creating Design Partitions With Tcl Scripting
You can also create partitions with Tcl scripting commands.
Related Information
Scripting Support on page 64

1.3.3.5. Automatically-Generated Partitions

The Compiler creates some partitions automatically as part of the compilation process,
which appear in some post-compilation reports. For example, the sld_hub partition is
created for tools that use JTAG hub connections, such as the SignalTap II Logic
Analyzer. The hard_block partition is created to contain certain "hard" or dedicated
logic blocks in the device that are implemented in a separate partition so that they can
be shared throughout the design.

1.4. Common Design Scenarios Using Incremental Compilation
Related Information

Steps for Incremental Compilation on page 13

1.4.1. Reducing Compilation Time When Changing Source Files for One
Partition

Scenario background: You set up your design to include partitions for several of the

major design blocks, and now you have just performed a lengthy compilation of the
entire design. An error is found in the HDL source file for one partition and it is being

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

15

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

I n t e I 1. Intel® Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design
®

683283 | 2018.09.24

fixed. Because the design is currently meeting timing requirements, and the fix is not
expected to affect timing performance, it makes sense to compile only the affected
partition and preserve the rest of the design.

Use the flow in this example to update the source file in one partition without having
to recompile the other parts of the design. To reduce the compilation time, instruct the
software to reuse the post-fit netlists for the unchanged partitions. This flow also
preserves the performance of these blocks, which reduces additional timing closure
efforts.

Perform the following steps to update a single source file:
1. Apply and save the fix to the HDL source file.
2. On the Assignments menu, open the Design Partitions window.

3. Change the netlist type of each partition, including the top-level entity, to Post-Fit
to preserve as much as possible for the next compilation.

e The Intel Quartus Prime software recompiles partitions by default when
changes are detected in a source file. You can refer to the Partition Dependent
Files table in the Analysis and Synthesis report to determine which partitions
were recompiled. If you change an assignment but do not change the logic in
a source file, you can set the netlist type to Source File for that partition to
instruct the software to recompile the partition's source design files and its
assignments.

4. Click Start Compilation to incrementally compile the fixed HDL code. This
compilation should take much less time than the initial full compilation.

5. Simulate the design to ensure that the error is fixed, and use the Timing Analyzer
report to ensure that timing results have not degraded.

Related Information
List of Compilation and Simulation Reports online help

1.4.2. Optimizing a Timing-Critical Partition

Scenario background: You have just performed a lengthy full compilation of a design
that consists of multiple partitions. The Timing Analyzer reports that the clock timing
requirement is not met, and you have to optimize one particular partition. You want to
try optimization techniques such as raising the Placement Effort Multiplier and running
Design Space Explorer II. Because these techniques all involve significant compilation
time, you should apply them to only the partition in question.

Use the flow in this example to optimize the results of one partition when the other
partitions in the design have already met their requirements. You can use this flow
iteratively to lock down the performance of one partition, and then move on to
optimization of another partition.

Perform the following steps to preserve the results for partitions that meet their timing
requirements, and to recompile a timing-critical partition with new optimization
settings:

1. Open the Design Partitions window.

2. For the partition in question, set the netlist type to Source File.

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

16

http://quartushelp.altera.com/current/index.htm#report/rpt/rpt_list_format.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Intel® Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design I n t e I
®

683283 | 2018.09.24

e If you change a setting that affects only the Fitter, you can save additional
compilation time by setting the netlist type to Post-Synthesis to reuse the
synthesis results and refit the partition.

For the remaining partitions (including the top-level entity), set the netlist type to
Post-Fit.

e You can optionally set the Fitter Preservation Level on the Advanced tab in
the Design Partitions Properties dialog box to Placement to allow for the
most flexibility during routing.

Apply the desired optimization settings.

Click Start Compilation to perform incremental compilation on the design with
the new settings. During this compilation, the Partition Merge stage automatically
merges the critical partition’s new synthesis netlist with the post-fit netlists of the
remaining partitions. The Fitter then refits only the required partition. Because the
effort is reduced as compared to the initial full compilation, the compilation time is
also reduced.

To use Design Space Explorer II, perform the following steps:

1.
2.

Repeat steps 1-3 of the previous procedure.

Save the project and run Design Space Explorer II.

1.4.3. Adding Design Logic Incrementally or Working With an Incomplete

Design

Scenario background: You have one or more partitions that are known to be timing-
critical in your full design. You want to focus on developing and optimizing this subset
of the design first, before adding the rest of the design logic.

Use this flow to compile a timing-critical partition or partitions in isolation, optionally
with extra optimizations turned on. After timing closure is achieved for the critical
logic, you can preserve its content and placement and compile the remaining
partitions with normal or reduced optimization levels. For example, you may want to
compile an IP block that comes with instructions to perform optimization before you
incorporate the rest of your custom logic.

To implement this design flow, perform the following steps:

1.

Partition the design and create floorplan location assignments. For best results,
ensure that the top-level design includes the entire project framework, even if
some parts of the design are incomplete and are represented by an empty
wrapper file.

For the partitions to be compiled first, in the Design Partitions window, set the
netlist type to Source File.

For the remaining partitions, set the netlist type to Empty.
To compile with the desired optimizations turned on, click Start Compilation.

Check the Timing Analyzer reports to ensure that timing requirements are met. If
so, proceed to step 6. Otherwise, repeat steps 4 and 5 until the requirements are
met.

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

17

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Intel® Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design
® 683283 | 2018.09.24

6. In the Design Partitions window, set the netlist type to Post-Fit for the first
partitions. You can set the Fitter Preservation Level on the Advanced tab in
the Design Partitions Properties dialog box to Placement to allow more
flexibility during routing if exact placement and routing preservation is not
required.

7. Change the netlist type from Empty to Source File for the remaining partitions,
and ensure that the completed source files are added to the project.

8. Set the appropriate level of optimizations and compile the design. Changing the
optimizations at this point does not affect any fitted partitions, because each
partition has its netlist type set to Post-Fit.

9. Check the Timing Analyzer reports to ensure that timing requirements are met. If
not, make design or option changes and repeat step 8 and step 9 until the
requirements are met.

The flow in this example is similar to design flows in which a module is implemented
separately and is later merged into the top-level. Generally, optimization in this flow
works only if each critical path is contained within a single partition. Ensure that if
there are any partitions representing a design file that is missing from the project, you
create a placeholder wrapper file to define the port interface.

Related Information

e Designing in a Team-Based Environment on page 49

e Deciding Which Design Blocks Should Be Design Partitions on page 26

e Empty Partitions on page 40

1.4.4. Debugging Incrementally With the Signal Tap Logic Analyzer

Scenario background: Your design is not functioning as expected, and you want to
debug the design using the Signal Tap Logic Analyzer. To maintain reduced compilation
times and to ensure that you do not negatively affect the current version of your
design, you want to preserve the synthesis and fitting results and add the Signal Tap
to your design without recompiling the source code.

Use this flow to reduce compilation times when you add the logic analyzer to debug
your design, or when you want to modify the configuration of the Signal Tap File
without modifying your design logic or its placement.

It is not necessary to create design partitions in order to use the Signal Tap
incremental compilation feature. The Signal Tap Logic Analyzer acts as its own
separate design partition.

Perform the following steps to use the Signal Tap Logic Analyzer in an incremental
compilation flow:

1. Open the Design Partitions window.

2. Set the netlist type to Post-fit for all partitions to preserve their placement.

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

18

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Intel® Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design
683283 | 2018.09.24 ®

e The netlist type for the top-level partition defaults to Source File, so be sure
to change this “Top” partition in addition to any design partitions that you
have created.

3. If you have not already compiled the design with the current set of partitions,
perform a full compilation. If the design has already been compiled with the
current set of partitions, the design is ready to add the Signal Tap Logic Analyzer.

4. Set up your SignalTap II File using the post-fitting filter in the Node Finder to
add signals for logic analysis. This allows the Fitter to add the SignalTap II logic to
the post-fit netlist without modifying the design results.

To add signals from the pre-synthesis netlist, set the partition’s netlist type to Source
File and use the presynthesis filter in the Node Finder. This allows the software to
resynthesize the partition and to tap directly to the pre-synthesis node names that
you choose. In this case, the partition is resynthesized and refit, so the placement is
typically different from previous fitting results.

Related Information

Design Debugging with the Signal Tap Logic Analyzer documentation

1.4.5. Functional Safety IP Implementation

In functional safety designs, recertification is required when logic is modified in safety
or standard areas of the design. Recertification is required because the FPGA
programming file has changed. You can reduce the amount of required recertification
if you use the functional safety separation flow in the software. By partitioning your
safety IP (SIP) from standard logic, you ensure that the safety critical areas of the
design remain the same when the standard areas in your design are modified. The
safety-critical areas remain the same at the bit level.

The functional safety separation flow supports only Cyclone IV and Cyclone V device
families.

Related Information

AN 704: FPGA-based Safety Separation Design Flow for Rapid Functional Safety
Certification
This design flow significantly reduces the certification efforts for the lifetime of an
FPGA-based industrial system containing both safety critical and nonsafety critical
components.

1.4.5.1. Software Tool Impact on Safety

The Intel Quartus Prime software can partition your design into safety partitions and
standard partitions, but the Intel Quartus Prime software does not perform any online
safety-related functionality. The Intel Quartus Prime software generates a bitstream
that performs the safety functions. For the purpose of compliance with a functional
safety standard, the Intel Quartus Prime software should be considered as an offline
support tool.

1.4.5.2. Functional Safety Separation Flow

The functional safety separation flow consists of two separate work flows. The design
creation flow and the design modification flow both use incremental compilation, but
the two flows have different use-case scenarios.

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

19

https://www.intel.com/content/www/us/en/docs/programmable/683552/current/design-debugging-with-the-logic-analyzer-69524.html
https://www.intel.com/content/www/us/en/docs/programmable/683720/current/fpga-based-safety-separation-design.html
https://www.intel.com/content/www/us/en/docs/programmable/683720/current/fpga-based-safety-separation-design.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

intel.

Figure 3.

1.4.5.2.1. Design Creation Flow

Functional Safety Separation Flow

Design
Modification
Flow

Design activity
entry point

Safety IP Change?

New Design?

Design
Creation
Flow

1. Intel® Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design

683283 | 2018.09.24

Design
(reation
Flow

The design creation flow describes the necessary steps for initial design creation in a
way that allows you to modify your design. Some of the steps are architectural
constraints and the remaining steps are steps that you need to perform in the Intel
Quartus Prime software. Use the design creation flow for the first pass certification of

your product.

When you make modifications to the safety IP in your design, you must use the design

creation flow.

Intel Quartus Prime Standard Edition User Guide: Design Compilation

20

D Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Intel® Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design
683283 | 2018.09.24 ®

Figure 4. Design Creation Flow

Design Creation Flow Intel FPGA Development
Tool Flow Stage V-model Stage

(reate Design Hierarchy

|

FPGA Architecture/Logical module design

Define Safety IP Partitions

|

Create Safety IP } Logical Module Integration

LogicLock Region

Compile the Design

I

Export Safety IP Partition

Synthesis/Place and Route

I

Generate Safety IP POF Partion

l Verification

(reate Safety IP POF Partion Hash

The design creation flow becomes active when you have a valid safety IP partition in
your Intel Quartus Prime project and that safety IP partition does not have place and
route data from a previous compile. In the design creation flow, the Assembler
generates a Partial Settings Mask (.psm) file for each safety IP partition. Each .psm
file contains a list of programming bits for its respective safety IP partition.

The Intel Quartus Prime software determines whether to use the design creation flow
or designh modification flow on a per partition basis. It is possible to have multiple
safety IP partitions in a design where some are running the design creation flow and
others are running the design modification flow.

To reset the complete design to the design creation flow, remove the previous place
and route data by cleaning the project (removing the dbs). Alternatively, use the
partition import flow, to selectively reset the design. You can remove the netlists for
the imported safety IP partitions individually using the Design Partitions window.

Related Information
e Exporting and Importing Your Safety IP on page 26
¢ Design Partitions Window online help

1.4.5.2.2. Design Modification Flow

The design modification flow describes the necessary steps to make modifications to
the standard IP in your design. This flow ensures that the previously compiled safety
IP that the project uses remains unchanged when you change or compile standard IP.

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

21

http://quartushelp.altera.com/current/index.htm#comp/increment/comp_com_qid_design_partition.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Intel® Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design
® 683283 | 2018.09.24

Use the design modification flow only after you qualify your design in the design
creation flow.

Figure 5. Design Modification Flow

Modify Standard IP

Import Safety IP Partition

Compile the Design

Y

Generate Safety IP POF Partition

A4

(reate Safety POF Partition Hash

A

Compare POF Partition Hash

Y

Hardware Verification
(readback of POF)

When the design modification flow is active for a safety IP partition, the Fitter runs in
Strict Preservation mode for that partition. The Assembler performs run-time checks
that compare the Partial Settings Mask information matches the .psm file generated in
the design creation flow. If the Assembler detects a mismatch, a "Bad Mask!" or
"ASM_STRICT_PRESERVATION_BITS_UTILITY::compare_masked_byte_array failed"
internal error message is shown. If you see either error message while compiling your
design, contact Intel Premier Support for assistance.

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

22

https://www.intel.com/content/www/us/en/support/programmable/support-resources/overview.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Intel® Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design
683283 | 2018.09.24 ®

When a change is made to any HDL source file that belongs to a safety IP, the default
behavior of the Intel Quartus Prime software is to resynthesize and perform a clean
place and route for that partition, which then activates the design creation flow for
that partition. To change this default behavior and keep the design modification flow
active, do the following:

e Use the partition export/import flow.

or

e Use the Design Partitions window to modify the design partition properties and
turn on Ignore changes in source files and strictly use the specified netlist,
if available.

The Fitter applies the same design flow to all partitions that belong to the same safety
IP. If more than one safety IP is used in the design, the Fitter may evoke different
flows for different safety IPs.

Note: If your safety IP is a sub-block in a Platform Designer system, every time you
regenerate HDL for the Platform Designer system, the timestamp for the safety IP HDL
changes. This results in resynthesis of the safety IP, unless the default behavior
(described above) is changed.

Related Information
e Exporting and Importing Your Safety IP on page 26

e Design Partitions Window online help

1.4.5.3. How to Turn On the Functional Safety Separation Flow

Every safety-related IP component in your design should be implemented in a
partition(s) so the safety IPs are protected from recompilation. Use the global
assignment PARTITION_ENABLE_STRICT_PRESERVATION to identify safety IP in
your design.

set_global_assignment -name PARTITION_ENABLE_STRICT_PRESERVATION <ON/OFF> -
section_id <partition_name>

When this global assignment is designated as ON for a partition, the partition is
protected from recompilation, exported as a safety IP, and included in the safety IP
POF mask. Specifying the value as ON for any partition turns on the functional safety
separation flow.

When this global assignment is designated as OFF, the partition is considered as
standard IP or as not having a PARTITION_ENABLE_STRICT_PRESERVATION
assignment at all. Logic that is not assigned to a partition is considered as part of the
top partition and treated as standard logic.

Note: Only partitions and I/0 pins can be assigned to SIP.

A partition assigned to safety IP can contain safety logic only. If the parent partition is
assigned to a safety IP, then all the child partitions for this parent partition are
considered as part of the safety IP. If you do not explicitly specify a child partition as a
safety IP, a critical warning notifies you that the child partition is treated as part of a
safety IP.

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

23

http://quartushelp.altera.com/current/index.htm#comp/increment/comp_com_qid_design_partition.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Intel® Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design
® 683283 | 2018.09.24

A design can contain several safety IPs. All the partitions containing logic that
implements a single safety IP function should belong with the same top-level parent
partition.

You can also turn on the functional safety separation flow from the Design Partition
Properties dialog box. Click the Advanced tab and turn on Allow partition to be
strictly preserved for safety.

When the functional safety separation flow is active, you can view which partitions in
your design have the Strict Preservation property turned on. The Design Partitions
window displays a on or off value for safety IP in your design (in the Strict
Preservation column).

1.4.5.4. Preservation of Device Resources

The preservation of the partition’s netlist atoms and the atoms placement and routing,
in the design modification flow, is done by setting the netlist type to Post-fit with the
Fitter preservation level set to Placement and Routing Preserved.

1.4.5.5. Preservation of Placement in the Device with LogicLock

In order to fix the safety IP logic into specific areas of the device, you should define
LogicLock regions. By using preserved LogicLock regions, device placement is reserved
for the safety IP to prevent standard logic from being placed into the unused
resources of the safety IP region. You establish a fixed size and origin to ensure
location preservation. You need to use LogicLock to ensure a valid safety IP POF mask
is generated when you turn on the functional safety separation flow. The POF
comparison tool for functional safety can check that the safety region is unchanged
between compiles. A LogicLock region assigned to a safety IP can only contain safety
IP logic.

1.4.5.6. Assignhing I/0 Pins

You use a global assignment or the Design Partition Properties dialog box to
specify that a pin is assigned to a safety IP partition.

Use the following global assignment to assign a pin to a safety IP partition:

set_instance_assignment -name ENABLE_STRICT_PRESERVATION ON/OFF -to <hpath> -section_id
<region_name>

e <hpath> refers to an I/O pin (pad).
e <region_name> refers to the top-level safety IP partition name.
A value of ON indicates that the pin is a safety pin that should be preserved with the

safety IP block. A value of OFF indicates that the pin that connects to the safety IP,
should be treated as a standard pin, and is not preserved with the safety IP.

You also turn on strict preservation for I/O pins in the Design Partition Properties
dialog box. Click the Advanced tab and choose On for I/O pins that you want to
preserve.

Note: All pins that connect to a safety IP partition must have an explicit assignment. The
software reports an error if a pin that connects to the safety IP partition does not have
an assignment or if a pin does not connect to the specified <region_name>.

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

24

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Intel® Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design
683283 | 2018.09.24 ®

If an IO_REG group contains a pin that is assigned to a safety IP partition, all of the
pins in the IO_REG group are reserved for the safety IP partition. All pins in the
IO0_REG group must be assigned to the same safety IP partition, and none of the pins
in the group can be assigned to standard signals.

1.4.5.7. General Guidelines for Implementation

e Aninternal clock source, such as a PLL, should be implemented in a safe partition.
e An I/O pin driving the external clock should be indicated as a safety pin.

e To export a safety IP containing several partitions, the top-level partition for the
safety IP should be exported. A safety IP containing several partitions is flattened
and converted into a single partition during export. This hierarchical safety IP is
flattened to enure bit-level settings are preserved.

e Hard blocks implemented in a safe partition needs to stay with the safe partition.

1.4.5.8. Reports for Safety IP

When you have the functional safety separation flow turned on, the Intel Quartus
Prime software displays safety IP and standard IP information in the Fitter report.

1.4.5.8.1. Fitter Report

The Fitter report includes information for each safety IP and the respective partition
and I/O usage. The report contains the following information:

e Safety IP name defined as the name of the top-level safety IP partition
e Effective design flow for the safety IP

e Names of all partitions that belong to the safety IP

e Number of safety/standard inputs to the safety IP

e Number of safety/standard outputs to the safety IP

e LogiclLock region names along with size and locations for the regions

e I/0 pins used for the respective safety IP in your design

e Safety-related error messages

1.4.5.9. SIP Partial Bitstream Generation

The Programmer generates a bitstream file containing only the bits for a safety IP.
This partial preserved bitstream (.ppb) file is for the safety IP region mask. The
command lines to generate the partial bitstream file are the following:

e quartus_cpf --genppb safel.psm design.sof safel.rbf.ppb
e quartus_cpf -c safel._psm safel.rbf.ppb
The .ppb file is generated in two steps.

1. Generation of partial SOF.
2. Generation of . ppb file using the partial SOF.

The .psm file, .ppb file, and MD5 hash signature (.md5.sign) file created during
partial bitstream generation should be archived for use in future design modification
flow compiles.

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

25

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Intel® Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design
® 683283 | 2018.09.24

1.4.5.10. Exporting and Importing Your Safety IP
Safety IP Partition Export

After you have successfully compiled the safety IP(s) in the Intel Quartus Prime
software, save the safety IP partition place and route information for use in any
subsequent design modification flow. Saving the partition information allows the safety
IP to be imported to a clean Intel Quartus Prime project where no previous
compilation results have been removed (even if the version of the Intel Quartus Prime
software being used is newer than the Intel Quartus Prime software version with which
the safety IP was originally compiled). Use the Design Partitions window to export
the design partition. Verify that only the post-fit netlist and export routing options are
turned on when you generate the .gxp file for each safety IP. The .gxp files should
be archived along with the partial bitstream files for use in later design modification
flow compiles.

Safety IP Partition Import

You can import a previously exported safety IP partition into your Intel Quartus Prime
project. There are two use-cases for this.

e (Optional) Import into the original project to ensure that any potential source code
changes do not trigger the design creation flow unintentionally.

e Import into a new or clean project where you want to use the design modification
flow for the safety IP. As the exported partition is independent of your Intel
Quartus Prime software version, you can import the .gxp into a future Intel
Quartus Prime software release.

To import a previously exported design partition, use the Design Partitions window
and import the _gxp.

1.4.5.11. POF Comparison Tool for Verification

There is a separate safe/standard partitioning verification tool that is licensed to safety
users. Along with the .ppb file, a .md5.sign file is generated. The MD5 hash
signature can be used for verification. For more detailed verification, the POF
comparison tool should be used. This POF comparison tool is available in the Altera
Functional Safety Data Package.

1.5. Deciding Which Design Blocks Should Be Design Partitions

The incremental compilation design flow requires more planning than flat
compilations. For example, you might have to structure your source code or design
hierarchy to ensure that logic is grouped correctly for optimization.

It is a common design practice to create modular or hierarchical designs in which you
develop each design entity separately, and then instantiate them in a higher-level
entity, forming a complete design. The Intel Quartus Prime software does not
automatically consider each design entity or instance to be a design partition for
incremental compilation; instead, you must designate one or more design hierarchies
below the top-level project as a design partition. Creating partitions might prevent the
Compiler from performing optimizations across partition boundaries. However, this
allows for separate synthesis and placement for each partition, making incremental
compilation possible.

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

26

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Intel® Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design
683283 | 2018.09.24 ®

Partitions must have the same boundaries as hierarchical blocks in the design because
a partition cannot be a portion of the logic within a hierarchical entity. You can merge
partitions that have the same immediate parent partition to create a single partition
that includes more than one hierarchical entity in the design. When you declare a
partition, every hierarchical instance within that partition becomes part of the same
partition. You can create new partitions for hierarchical instances within an existing
partition, in which case the instances within the new partition are no longer included in
the higher-level partition, as described in the following example.

In the figure below, a complete design is made up of instances A, B, C, D, E, F, and
G. The shaded boxes in Representation i indicate design partitions in a “tree”
representation of the hierarchy. In Representation ii, the lower-level instances are
represented inside the higher-level instances, and the partitions are illustrated with
different colored shading. The top-level partition, called “Top”, automatically contains
the top-level entity in the design, and contains any logic not defined as part of another
partition. The design file for the top level may be just a wrapper for the hierarchical
instances below it, or it may contain its own logic. In this example, partition B
contains the logic in instances B, D, and E. Entities F and G were first identified as
separate partitions, and then merged together to create a partition F-G. The partition
for the top-level entity A, called “Top”, includes the logic in one of its lower-level
instances, C, because C was not defined as part of any other partition.

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

27

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Intel® Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design
® 683283 | 2018.09.24

Figure 6. Partitions in a Hierarchical Design

Representation i

Partition Top

Partition B Merged Partition F-G

Representation ii

A

B C

S
rm

-
()

You can create partition assignments to any design instance. The instance can be
defined in HDL or schematic design, or come from a third-party synthesis tool as a
VQM or EDIF netlist instance.

To take advantage of incremental compilation when source files change, create
separate design files for each partition. If you define two different entities as separate
partitions but they are in the same design file, you cannot maintain incremental
compilation because the software would have to recompile both partitions if you
changed either entity in the design file. Similarly, if two partitions rely on the same
lower-level entity definition, changes in that lower-level affect both partitions.

The remainder of this section provides information to help you choose which design
blocks you should assign as partitions.

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

28

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Intel® Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design
683283 | 2018.09.24 ®

1.5.1. Impact of Design Partitions on Design Optimization

The boundaries of your design partitions can impact the design’s quality of results.
Creating partitions might prevent the Compiler from performing logic optimizations
across partition boundaries, which allows the software to synthesize and place each
partition separately in an incremental flow. Therefore, consider partitioning guidelines
to help reduce the effect of partition boundaries.

Whenever possible, register all inputs and outputs of each partition. This helps avoid
any delay penalty on signals that cross partition boundaries and keeps each
register-to-register timing path within one partition for optimization. In addition,
minimize the number of paths that cross partition boundaries. If there are
timing-critical paths that cross partition boundaries, rework the partitions to avoid
these inter-partition paths. Including as many of the timing-critical connections as
possible inside a partition allows you to effectively apply optimizations to that partition
to improve timing, while leaving the rest of the design unchanged.

Avoid constant partition inputs and outputs. You can also merge two or more
partitions to allow cross-boundary optimizations for paths that cross between the
partitions, as long as the partitions have the same parent partition. Merging related
logic from different hierarchy blocks into one partition can be useful if you cannot
change the design hierarchy to accommodate partition assignments.

If critical timing paths cross partition boundaries, you can perform timing budgeting
and make timing assignments to constrain the logic in each partition so that the entire
timing path meets its requirements. In addition, because each partition is optimized
independently during synthesis, you may have to perform resource allocation to
ensure that each partition uses an appropriate number of device resources. If design
partitions are compiled in separate Intel Quartus Prime projects, there may be
conflicts related to global routing resources for clock signals when the design is
integrated into the top-level design. You can use the Global Signal logic option to
specify which clocks should use global or regional routing, use the ALTCLK_CTRL IP
core to instantiate a clock control block and connect it appropriately in both the
partitions being developed in separate Intel Quartus Prime projects, or find the
compiler-generated clock control node in your design and make clock control location
assignments in the Assignment Editor.

1.5.1.1. Turning On Supported Cross-boundary Optimizations

You can improve the optimizations performed between design partitions by turning on
supported cross-boundary optimizations. These optimizations are turned on a per
partition basis and you can select the optimizations as individual assignments. This
allows the cross-boundary optimization feature to give you more control over the
optimizations that work best for your design. You can turn on the cross-boundary
optimizations for your design partitions on the Advanced tab of the Design Partition
Properties dialog box. Once you change the optimization settings, the Intel Quartus
Prime software recompiles your partition from source automatically. Cross-boundary
optimizations include the following: propagate constants, propagate inversions on
partition inputs, merge inputs fed by a common source, merge electrically equivalent
bidirectional pins, absorb internal paths, and remove logic connected to dangling
outputs.

Cross-boundary optimizations are implemented top-down from the parent partition
into the child partition, but not vice-versa. Also, cross-boundary optimizations cannot
be enabled for partitions that allow multiple personas (partial reconfiguration
partitions).

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

29

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Intel® Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design
® 683283 | 2018.09.24

Related Information

Best Practices for Incremental Compilation Partitions and Floorplan Assignments
documentation on page 71

1.5.2. Design Partition Assignments Compared to Physical Placement
Assignments

Design partitions for incremental compilation are logical partitions, which is different
from physical placement assignments in the device floorplan. A logical design partition
does not refer to a physical area of the device and does not directly control the
placement of instances. A logical design partition sets up a virtual boundary between
design hierarchies so that each is compiled separately, preventing logical optimizations
from occurring between them. When the software compiles the design source code,
the logic in each partition can be placed anywhere in the device unless you make
additional placement assignments.

If you preserve the compilation results using a Post-Fit netlist, it is not necessary for
you to back-annotate or make any location assignments for specific logic nodes. You
should not use the incremental compilation and logic placement back-annotation
features in the same Intel Quartus Prime project. The incremental compilation feature
does not use placement “assignments” to preserve placement results; it simply reuses
the netlist database that includes the placement information.

You can assign design partitions to physical regions in the device floorplan using
LogicLock region assignments. In the Intel Quartus Prime software, LogicLock regions
are used to constrain blocks of a design to a particular region of the device. Altera
recommends using LogicLock regions for timing-critical design blocks that will change
in subsequent compilations, or to improve the quality of results and avoid placement
conflicts in some cases.

Related Information
e Creating a Design Floorplan With LogicLock Regions on page 56

e Best Practices for Incremental Compilation Partitions and Floorplan Assignments
documentation on page 71

1.5.3. Using Partitions With Third-Party Synthesis Tools

If you are using a third-party synthesis tool, set up your tool to create a separate VQM
or EDIF netlist for each hierarchical partition. In the Intel Quartus Prime software,
assign the top-level entity from each netlist to be a design partition. The VQM or EDIF
netlist file is treated as the source file for the partition in the Intel Quartus Prime
software.

1.5.3.1. Synopsys Synplify Pro/Premier and Mentor Graphics Precision RTL Plus

The Synplify Pro and Synplify Premier software include the MultiPoint synthesis feature
to perform incremental synthesis for each design block assigned as a Compile Point in
the user interface or a script. The Precision RTL Plus software includes an incremental
synthesis feature that performs block-based synthesis based on Partition assignments
in the source HDL code. These features provide automated block-based incremental
synthesis flows and create different output netlist files for each block when set up for
an Altera device.

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

30

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Intel® Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design
683283 | 2018.09.24 ®

Using incremental synthesis within your synthesis tool ensures that only those
sections of a design that have been updated are resynthesized when the design is
compiled, reducing synthesis run time and preserving the results for the unchanged
blocks. You can change and resynthesize one section of a design without affecting
other sections of the design.

1.5.3.2. Other Synthesis Tools

You can also partition your design and create different netlist files manually with the
basic Synplify software (non-Pro/Premier), the basic Precision RTL software
(non-Plus), or any other supported synthesis tool by creating a separate project or
implementation for each partition, including the top level. Set up each higher-level
project to instantiate the lower-level VQM/EDIF netlists as black boxes. Synplify,
Precision, and most synthesis tools automatically treat a design block as a black box if
the logic definition is missing from the project. Each tool also includes options or
attributes to specify that the design block should be treated as a black box, which you
can use to avoid warnings about the missing logic.

1.5.4. Assessing Partition Quality

The Intel Quartus Prime software provides various tools to assess the quality of your
assigned design partitions. You can take advantage of these tools to assess your
partition quality, and use the information to improve your design or assignments as
required to achieve the best results.

1.5.4.1. Partition Statistics Reports

After compilation, you can view statistics about design partitions in the Partition Merge
Partition Statistics report, and on the Statistics tab in the Design Partitions
Properties dialog box.

The Partition Merge Partition Statistics report lists statistics about each partition. The
statistics for each partition (each row in the table) include the number of logic cells it
contains, as well as the number of input and output pins it contains, and how many
are registered or unconnected.

You can also view post-compilation statistics about the resource usage and port
connections for a particular partition on the Statistics tab in the Design Partition
Properties dialog box.

Related Information

Best Practices for Incremental Compilation Partitions and Floorplan Assignments
documentation on page 71

1.5.4.2. Partition Timing Reports

You can generate a Partition Timing Overview report and a Partition Timing Details
report by clicking Report Partitions in the Tasks pane in the Timing Analyzer, or
using the report_partitions Tcl command.

The Partition Timing Overview report shows the total number of failing paths for each
partition and the worst-case slack for any path involving the partition.

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

31

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

I n t e I 1. Intel® Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design
®

683283 | 2018.09.24

The Partition Timing Details report shows the number of failing partition-to-partition
paths and worst-case slack for partition-to-partition paths, to provide a more detailed
breakdown of where the critical paths in the design are located with respect to design
partitions.

1.5.4.3. Incremental Compilation Advisor

Note:

You can use the Incremental Compilation Advisor to check that your design follows
Altera’s recommendations for creating design partitions and floorplan location
assignments.

Recommendations are split into General Recommendations, Timing
Recommendations, and Team-Based Design Recommendations that apply to
design flows in which partitions are compiled independently in separate Intel Quartus
Prime projects before being integrated into the top-level design. Each
recommendation provides an explanation, describes the effect of the recommendation,
and provides the action required to make a suggested change. In some cases, there is
a link to the appropriate Intel Quartus Prime settings page where you can make a
suggested change to assignments or settings. For some items, if your design does not
follow the recommendation, the Check Recommendations operation creates a table
that lists any nodes or paths in your design that could be improved. The relevant
timing-independent recommendations for the design are also listed in the Design
Partitions window and the LogicLock Regions window.

To verify that your design follows the recommendations, go to the Timing
Independent Recommendations page or the Timing Dependent
Recommendations page, and then click Check Recommendations. For large
designs, these operations can take a few minutes.

After you perform a check operation, symbols appear next to each recommendation to
indicate whether the design or project setting follows the recommendations, or if some
or all of the design or project settings do not follow the recommendations. Following
these recommendations is not mandatory to use the incremental compilation feature.
The recommendations are most important to ensure good results for timing-critical
partitions.

For some items in the Advisor, if your design does not follow the recommendation, the
Check Recommendations operation lists any parts of the design that could be
improved. For example, if not all of the partition I/O ports follow the Register All
Non-Global Ports recommendation, the advisor displays a list of unregistered ports
with the partition name and the node name associated with the port.

When the advisor provides a list of nodes, you can right-click a node, and then click
Locate to cross-probe to other Intel Quartus Prime features, such as the RTL Viewer,
Chip Planner, or the design source code in the text editor.

Opening a new Timing Analyzer report resets the Incremental Compilation Advisor
results, so you must rerun the Check Recommendations process.

1.6. Specifying the Level of Results Preservation for Subsequent
Compilations

The netlist type of each design partition allows you to specify the level of results
preservation. The netlist type determines which type of netlist or source file the
Partition Merge stage uses in the next incremental compilation.

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

32

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Intel® Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design I n t e I
®

683283 | 2018.09.24

When you choose to preserve a post-fit compilation netlist, the default level of Fitter
preservation is the highest degree of placement and routing preservation supported by
the device family. The advanced Fitter Preservation Level setting allows you to specify
the amount of information that you want to preserve from the post-fit netlist file.

1.6.1. Netlist Type for Design Partitions

Before starting a new compilation, ensure that the appropriate netlist type is set for
each partition to preserve the desired level of compilation results. The table below

describes the settings for the netlist type, explains the behavior of the Intel Quartus
Prime software for each setting, and provides guidance on when to use each setting.

Table 2. Partition Netlist Type Settings

Netlist Type

Intel Quartus Prime Software Behavior for Partition During Compilation

Source File

Always compiles the partition using the associated design source file(s). (2)

Use this netlist type to recompile a partition from the source code using new synthesis
or Fitter settings.

Post-Synthesis

Preserves post-synthesis results for the partition and reuses the post-synthesis netlist
when the following conditions are true:

e A post-synthesis netlist is available from a previous synthesis.

¢ No change that initiates an automatic resynthesis has been made to the partition
since the previous synthesis. (3)

Compiles the partition from the source files if resynthesis is initiated or if a post-

synthesis netlist is not available. (2)

Use this netlist type to preserve the synthesis results unless you make design changes,

but allow the Fitter to refit the partition using any new Fitter settings.

Post-Fit

Preserves post-fit results for the partition and reuses the post-fit netlist when the

following conditions are true:

e A post-fit netlist is available from a previous fitting.

e No change that initiates an automatic resynthesis has been made to the partition
since the previous fitting. 3)

When a post-fit netlist is not available, the software reuses the post-synthesis netlist if it

is available, or otherwise compiles from the source files. Compiles the partition from the

source files if resynthesis is initiated. (2)

The Fitter Preservation Level specifies what level of information is preserved from the

post-fit netlist.

Assignment changes, such as Fitter optimization settings, do not cause a partition set to

Post-Fit to recompile.

Empty

Uses an empty placeholder netlist for the partition. The partition's port interface
information is required during Analysis and Synthesis to connect the partition correctly
to other logic and partitions in the design, and peripheral nodes in the source file
including pins and PLLs are preserved to help connect the empty partition to the rest of
the design and preserve timing of any lower-level non-empty partitions within empty
partitions. If the source file is not available, you can create a wrapper file that defines
the design block and specifies the input, output, and bidirectional ports. In Verilog HDL:
a module declaration, and in VHDL: an entity and architecture declaration.

continued...

(2) If you use Rapid Recompile, the Intel Quartus Prime software might not recompile the entire
partition from the source code as described in this table; it will reuse compatible results if
there have been only small changes to the logic in the partition.

(3) You can turn on the Ignore changes in source files and strictly use the specified
netlist, if available option on the Advanced tab in the Design Partitions Properties
dialog box to specify whether the Compiler should ignore source file changes when deciding
whether to recompile the partition.

D Send Feedback

Intel Quartus Prime Standard Edition User Guide: Design Compilation

33

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

intel.

1. Intel® Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design
683283 | 2018.09.24

Netlist Type Intel Quartus Prime Software Behavior for Partition During Compilation

You can use this netlist type to skip the compilation of a partition that is incomplete or
missing from the top-level design. You can also set an empty partition if you want to
compile only some partitions in the design, such as to optimize the placement of a
timing-critical block such as an IP core before incorporating other design logic, or if the
compilation time is large for one partition and you want to exclude it.

If the project database includes a previously generated post-synthesis or post-fit netlist
for an unchanged Empty partition, you can set the netlist type from Empty directly to
Post-Synthesis or Post-Fit and the software reuses the previous netlist information
without recompiling from the source files.

Related Information

What Changes Initiate the Automatic Resynthesis of a Partition? on page 35
Fitter Preservation Level for Design Partitions on page 34

Incremental Capabilities Available When A Design Has No Partitions on page 8

1.6.2. Fitter Preservation Level for Design Partitions

The default Fitter Preservation Level for partitions with a Post-Fit netlist type is the
highest level of preservation available for the target device family and provides the
most compilation time reduction.

You can change the advanced Fitter Preservation Level setting to provide more
flexibility in the Fitter during placement and routing. You can set the Fitter
Preservation Level on the Advanced tab in the Design Partitions Properties dialog

box.
Table 3. Fitter Preservation Level Settings
Fitter Intel Quartus Prime Behavior for Partition During Compilation
Preservation
Level

Placement and
Routing

Preserves the design partition’s netlist atoms and their placement and routing.

This setting reduces compilation times compared to Placement only, but provides less flexibility to the
router to make changes if there are changes in other parts of the design.

By default, the Fitter preserves the usage of high-speed programmable power tiles contained within
the selected partition, for devices that support high-speed and low-power tiles. You can turn off the
Preserve high-speed tiles when preserving placement and routing option on the Advanced tab
in the Design Partitions Properties dialog box.

Placement

Preserves the netlist atoms and their placement in the design partition. Reroutes the design partition
and does not preserve high-speed power tile usage.

Netlist Only

Preserves the netlist atoms of the design partition, but replaces and reroutes the design partition. A
post-fit netlist with the atoms preserved can be different than the Post-Synthesis netlist because it
contains Fitter optimizations; for example, Physical Synthesis changes made during a previous Fitting.

You can use this setting to:
e Preserve Fitter optimizations but allow the software to perform placement and routing again.

e Reapply certain Fitter optimizations that would otherwise be impossible when the placement is
locked down.

e Resolve resource conflicts between two imported partitions.

1.6.3. Where Are the Netlist Databases Saved?

The incremental compilation database folder (\incremental_db) includes all the
netlist information from previous compilations. To avoid unnecessary recompilations,
these database files must not be altered or deleted.

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

34

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Intel® Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design
683283 | 2018.09.24 ®

If you archive or reproduce the project in another location, you can use a Intel
Quartus Prime Archive File (.qar). Include the incremental compilation database files
to preserve post-synthesis or post-fit compilation results.

To manually create a project archive that preserves compilation results without
keeping the incremental compilation database, you can keep all source and settings
files, and create and save a Intel Quartus Prime Settings File (.qxp) for each partition
in the design that will be integrated into the top-level design.

Related Information
¢ Using Incremental Compilation With Intel Quartus Prime Archive Files on page 59

e Exporting Design Partitions from Separate Intel Quartus Prime Projects on page
37

1.6.4. Deleting Netlists

You can choose to abandon all levels of results preservation and remove all netlists
that exist for a particular partition with the Delete Netlists command in the Design
Partitions window. When you delete netlists for a partition, the partition is compiled
using the associated design source file(s) in the next compilation. Resetting the netlist
type for a partition to Source would have the same effect, though the netlists would
not be permanently deleted and would be available for use in subsequent
compilations. For an imported partition, the Delete Netlists command also optionally
allows you to remove the imported .qxp.

1.6.5. What Changes Initiate the Automatic Resynthesis of a Partition?

A partition is synthesized from its source files if there is no post-synthesis netlist
available from a previous synthesis, or if the netlist type is set to Source File.
Additionally, certain changes to a partition initiate an automatic resynthesis of the
partition when the netlist type is Post Synthesis or Post-Fit. The software
resynthesizes the partition in these cases to ensure that the design description
matches the post-place-and-route programming files.

The following list explains the changes that initiate a partition’s automatic resynthesis
when the netlist type is set to Post-Synthesis or Post-Fit:

e The device family setting has changed.

e Any dependent source design file has changed.

e The partition boundary was changed by an addition, removal, or change to the
port boundaries of a partition (for example, a new partition has been defined for a
lower-level instance within this partition).

e A dependent source file was compiled into a different library (so it has a different
-library argument).

e A dependent source file was added or removed; that is, the partition depends on a
different set of source files.

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

35

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Intel® Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design
® 683283 | 2018.09.24

e The partition’s root instance has a different entity binding. In VHDL, an instance
may be bound to a specific entity and architecture. If the target entity or
architecture changes, it triggers resynthesis.

e The partition has different parameters on its root hierarchy or on an internal AHDL
hierarchy (AHDL automatically inherits parameters from its parent hierarchies).
This occurs if you modified the parameters on the hierarchy directly, or if you
modified them indirectly by changing the parameters in a parent design hierarchy.

e You have moved the project and compiled database between a Windows and Linux
system. Due to the differences in the way new line feeds are handled between the
operating systems, the internal checksum algorithm may detect a design file
change in this case.

The software reuses the post-synthesis results but re-fits the design if you change the
device setting within the same device family. The software reuses the post-fitting
netlist if you change only the device speed grade.

Synthesis and Fitter assignments, such as optimization settings, timing assignments,
or Fitter location assignments including pin assignments, do not trigger automatic
recompilation in the incremental compilation flow. To recompile a partition with new
assignments, change the netlist type for that partition to one of the following:

e Source File to recompile with all new settings

¢ Post-Synthesis to recompile using existing synthesis results but new Fitter
settings

¢ Post-Fit with the Fitter Preservation Level set to Placement to rerun routing
using existing placement results, but new routing settings (such as delay chain
settings)

You can use the LogicLock Origin location assignment to change or fine-tune the
previous Fitter results from a Post-Fit netlist.

Related Information

Changing Partition Placement with LogicLock Changes on page 57

1.6.5.1. Resynthesis Due to Source Code Changes

The Intel Quartus Prime software uses an internal checksum algorithm to determine
whether the contents of a source file have changed. Source files are the design
description files used to create the design, and include Memory Initialization Files
(.mif) as well as .qxp from exported partitions. When design files in a partition have
dependencies on other files, changing one file may initiate an automatic recompilation
of another file. The Partition Dependent Files table in the Analysis and Synthesis report
lists the design files that contribute to each design partition. You can use this table to
determine which partitions are recompiled when a specific file is changed.

For example, if a design has file A.v that contains entity A, B.v that contains entity B,
and C.v that contains entity C, then the Partition Dependent Files table for the
partition containing entity A lists file A.v, the table for the partition containing entity B
lists file B.v, and the table for the partition containing entity C lists file C.v. Any
dependencies are transitive, so if file A.v depends on B.v, and B.v depends on C.v,
the entities in file A.v depend on files B.v and C.v. In this case, files B.v and C.v are
listed in the report table as dependent files for the partition containing entity A.

Intel Quartus Prime Standard Edition User Guide: Design Compilation D Send Feedback

36

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Intel® Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design
683283 | 2018.09.24 ®

Note:

If you use Rapid Recompile, the Intel Quartus Prime software might not recompile the
entire partition from the source code as described in this section; it will reuse
compatible results if there have been only small changes to the logic in the partition.

If you define module parameters in a higher-level module, the Intel Quartus Prime
software checks the parameter values when determining which partitions require
resynthesis. If you change a parameter in a higher-level module that affects a
lower-level module, the lower-level module is resynthesized. Parameter dependencies
are tracked separately from source file dependencies; therefore, parameter definitions
are not listed in the Partition Dependent Files list.

If a design contains common files, such as an includes.v file that is referenced in
each entity by the command include includes.v, all partitions are dependent on
this file. A change to includes.v causes the entire design to be recompiled. The VHDL
statement use work.all also typically results in unnecessary recompilations,
because it makes all entities in the work library visible in the current entity, which
results in the current entity being dependent on all other entities in the design.

To avoid this type of problem, ensure that files common to all entities, such as a
common include file, contain only the set of information that is truly common to all
entities. Remove use work.all statements in your VHDL file or replace them by
including only the specific design units needed for each entity.

Related Information
Incremental Capabilities Available When A Design Has No Partitions on page 8

1.6.5.2. Forcing Use of the Compilation Netlist When a Partition has Changed

Forcing the use of a post-compilation netlist when the contents of a source file has
changed is recommended only for advanced users who understand when a partition
must be recompiled. You might use this assignment, for example, if you are making
source code changes but do not want to recompile the partition until you finish
debugging a different partition, or if you are adding simple comments to the source
file but you know the design logic itself is not being changed and you want to keep the
previous compilation results.

To force the Fitter to use a previously generated netlist even when there are changes
to the source files, right-click the partition in the Design Partitions window and then
click Design Partition Properties. On the Advanced tab, turn on the Ignore
changes in source files and strictly use the specified netlist, if available
option.

Turning on this option can result in the generation of a functionally incorrect netlist
when source design files change, because source file updates will not be recompiled.
Use caution when setting this option.

1.7. Exporting Design Partitions from Separate Intel Quartus Prime

Projects

Partitions that are developed by other designers or team members in the same
company or third-party IP providers can be exported as design partitions to a Intel
Quartus Prime Exported Partition File (.qxp), and then integrated into a top-level
design. A .qxp is a binary file that contains compilation results describing the
exported design partition and includes a post-synthesis netlist, a post-fit netlist, or

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

37

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

I n t e I 1. Intel® Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design
®

683283 | 2018.09.24

both, and a set of assignments, sometimes including LogicLock placement constraints.
The .qxp does not contain the source design files from the original Intel Quartus
Prime project.

To enable team-based development and third-party IP delivery, you can design and
optimize partitions in separate copies of the top-level Intel Quartus Prime project
framework, or even in isolation. If the designers have access to the top-level project
framework through a source control system, they can access project files as read-only
and develop their partition within the source control system. If designers do not have
access to a source control system, the project lead can provide the designer with a
copy of the top-level project framework to use as they develop their partitions. The
project lead also has the option to generate design partition scripts to manage
resource and timing budgets in the top-level design when partitions are developed
outside the top-level project framework.

The exported compilation results of completed partitions are given to the project lead,
preferably using a source control system, who is then responsible for integrating them
into the top-level design to obtain a fully functional design. This type of design flow is
required only if partition designers want to optimize their placement and routing
independently, and pass their design to the project lead to reuse placement and
routing results. Otherwise, a project lead can integrate source HDL from several
designers in a single Intel Quartus Prime project, and use the standard incremental
compilation flow described previously.

The figure below illustrates the team-based incremental compilation design flow using
a methodology in which partitions are compiled in separate Intel Quartus Prime
projects before being integrated into the top-level design. This flow can be used when
partitions are developed by other designers or IP providers.

Intel Quartus Prime Standard Edition User Guide: Design Compilation D Send Feedback

38

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Intel® Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design
683283 | 2018.09.24 ®

Figure 7. Team-Based Incremental Compilation Design Flow

Prepare Top-Level Design for
Incremental Compilation

v

Provide Project Framework or
(onstraints to Designers

Design, Compile, and
Optimize Partition(s)

Export Lower-Level Partition(s)

Repeat as Needed
* During Design, Verification,
Integrate Partition(s) & Debugging Stages

into Top-Level Design

Perform Incremental Compilation
in Top-Level Design

Note: You cannot export or import partitions that have been merged.

Related Information

e Deciding Which Design Blocks Should Be Design Partitions on page 26
e Incremental Compilation Restrictions on page 58

1.7.1. Preparing the Top-Level Design

To prepare your design to incorporate exported partitions, first create the top-level
project framework of the design to define the hierarchy for the subdesigns that will be
implemented by other team members, designers, or IP providers.

In the top-level design, create project-wide settings, for example, device selection,
global assignments for clocks and device I/O ports, and any global signal constraints
to specify which signals can use global routing resources.

Next, create the appropriate design partition assignments and set the netlist type for
each design partition that will be developed in a separate Intel Quartus Prime project
to Empty. It may be necessary to constrain the location of partitions with LogicLock
region assignments if they are timing-critical and are expected to change in future
compilations, or if the designer or IP provider wants to place and route their design
partition independently, to avoid location conflicts.

Finally, provide the top-level project framework to the partition designers, preferably
through a source control system.

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

39

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Intel® Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design
® 683283 | 2018.09.24

Related Information

Creating a Design Floorplan With LogicLock Regions on page 56

1.7.1.1. Empty Partitions

You can use a design flow in which some partitions are set to an Empty netlist type to
develop pieces of the design separately, and then integrate them into the top-level
design at a later time. In a team-based design environment, you can set the netlist
type to Empty for partitions in your design that will be developed by other designers
or IP providers. The Empty setting directs the Compiler to skip the compilation of a
partition and use an empty placeholder netlist for the partition.

When a netlist type is set to Empty, peripheral nodes including pins and PLLs are
preserved and all other logic is removed. The peripheral nodes including pins help
connect the empty partition to the design, and the PLLs help preserve timing of
non-empty partitions within empty partitions.

When you set a design partition to Empty, a design file is required during Analysis
and Synthesis to specify the port interface information so that it can connect the
partition correctly to other logic and partitions in the design. If a partition is exported
from another project, the .qxp contains this information. If there is no .qxp or design
file to represent the design entity, you must create a wrapper file that defines the
design block and specifies the input, output, and bidirectional ports. For example, in
Verilog HDL, you should include a module declaration, and in VHDL, you should include
an entity and architecture declaration.

1.7.2. Project Management— Making the Top-Level Design Available to
Other Designers

In team-based incremental compilation flows, whenever possible, all designers or IP
providers should work within the same top-level project framework. Using the same
project framework among team members ensures that designers have the settings
and constraints needed for their partition, and makes timing closure easier when
integrating the partitions into the top-level design. If other designers do not have
access to the top-level project framework, the Intel Quartus Prime software provides
tools for passing project information to partition designers.

1.7.2.1. Distributing the Top-Level Intel Quartus Prime Project

There are several methods that the project lead can use to distribute the “skeleton” or
top-level project framework to other partition designers or IP providers.

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

40

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1, Intel® Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design I n t e I
®

683283 | 2018.09.24

If partition designers have access to the top-level project framework, the project
will already include all the settings and constraints needed for the design. This
framework should include PLLs and other interface logic if this information is
important to optimize partitions.

— If designers are part of the same design environment, they can check out the
required project files from the same source control system. This is the
recommended way to share a set of project files.

— Otherwise, the project lead can provide a copy of the top-level project
framework so that each design develops their partition within the same project
framework.

If a partition designer does not have access to the top-level project framework,
the project lead can give the partition designer a Tcl script or other documentation
to create the separate Intel Quartus Prime project and all the assignments from
the top-level design.

If the partition designers provide the project lead with a post-synthesis .qxp and
fitting is performed in the top-level design, integrating the design partitions should be
quite easy. If you plan to develop a partition in a separate Intel Quartus Prime project
and integrate the optimized post-fitting results into the top-level design, use the
following guidelines to improve the integration process:

Ensure that a LogicLock region constrains the partition placement and uses only
the resources allocated by the project lead.

Ensure that you know which clocks should be allocated to global routing resources
so that there are no resource conflicts in the top-level design.

— Set the Global Signal assignment to On for the high fan-out signals that
should be routed on global routing lines.

— To avoid other signals being placed on global routing lines, turn off Auto
Global Clock and Auto Global Register Controls under More Settings on
the Fitter page in the Settings dialog box. Alternatively, you can set the
Global Signal assignment to Off for signals that should not be placed on global
routing lines.

Placement for LABs depends on whether the inputs to the logic cells within the
LAB use a global clock. You may encounter problems if signals do not use
global lines in the partition, but use global routing in the top-level design.

Use the Virtual Pin assignment to indicate pins of a partition that do not drive pins
in the top-level design. This is critical when a partition has more output ports than
the number of pins available in the target device. Using virtual pins also helps
optimize cross-partition paths for a complete design by enabling you to provide
more information about the partition ports, such as location and timing
assignments.

When partitions are compiled independently without any information about each
other, you might need to provide more information about the timing paths that
may be affected by other partitions in the top-level design. You can apply location
assignments for each pin to indicate the port location after incorporation in the
top-level design. You can also apply timing assignments to the I/O ports of the
partition to perform timing budgeting.

Related Information

Best Practices for Incremental Compilation Partitions and Floorplan Assignments
documentation on page 71

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

41

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Intel® Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design
® 683283 | 2018.09.24

1.7.2.2. Generating Design Partition Scripts

If IP providers or designers on a team want to optimize their design blocks
independently and do not have access to a shared project framework, the project lead
must perform some or all of the following tasks to ensure successful integration of the
design blocks:

e Determine which assignments should be propagated from the top-level design to
the partitions. This requires detailed knowledge of which assignments are required
to set up low-level designs.

e Communicate the top-level assignments to the partitions. This requires detailed
knowledge of Tcl or other scripting languages to efficiently communicate project
constraints.

e Determine appropriate timing and location assignments that help overcome the
limitations of team-based design. This requires examination of the logic in the
partitions to determine appropriate timing constraints.

e Perform final timing closure and resource conflict avoidance in the top-level
design. Because the partitions have no information about each other, meeting
constraints at the lower levels does not guarantee they are met when integrated
at the top-level. It then becomes the project lead’s responsibility to resolve the
issues, even though information about the partition implementation may not be
available.

Design partition scripts automate the process of transferring the top-level project
framework to partition designers in a flow where each design block is developed in
separate Intel Quartus Prime projects before being integrated into the top-level
design. If the project lead cannot provide each designer with a copy of the top-level
project framework, the Intel Quartus Prime software provides an interface for
managing resources and timing budgets in the top-level design. Design partition
scripts make it easier for partition designers to implement the instructions from the
project lead, and avoid conflicts between projects when integrating the partitions into
the top-level design. This flow also helps to reduce the need to further optimize the
designs after integration.

You can use options in the Generate Design Partition Scripts dialog box to choose
which types of assignments you want to pass down and create in the partitions being
developed in separate Intel Quartus Prime projects.

Related Information

Enabling Designers on a Team to Optimize Independently on page 51

1.7.3. Exporting Partitions

When partition designers achieve the design requirements in their separate Intel
Quartus Prime projects, each designer can export their design as a partition so it can
be integrated into the top-level design by the project lead. The Export Design
Partition dialog box, available from the Project menu, allows designers to export a
design partition to a Intel Quartus Prime Exported Partition File (.qxp) with a post-
synthesis netlist, a post-fit netlist, or both. The project lead then adds the .qxp to the
top-level design to integrate the partition.

A designer developing a timing-critical partition or who wants to optimize their
partition on their own would opt to export their completed partition with a post-fit
netlist, allowing for the partition to more reliably meet timing requirements after
integration. In this case, you must ensure that resources are allocated appropriately

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

42

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Intel® Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design
683283 | 2018.09.24 ®

to avoid conflicts. If the placement and routing optimization can be performed in the
top-level design, exporting a post-synthesis netlist allows the most flexibility in the
top-level design and avoids potential placement or routing conflicts with other
partitions.

When designing the partition logic to be exported into another project, you can add
logic around the design block to be exported as a design partition. You can instantiate
additional design components for the Intel Quartus Prime project so that it matches
the top-level design environment, especially in cases where you do not have access to
the full top-level design project. For example, you can include a top-level PLL in the
project, outside of the partition to be exported, so that you can optimize the design
with information about the frequency multipliers, phase shifts, compensation delays,
and any other PLL parameters. The software then captures timing and resource
requirements more accurately while ensuring that the timing analysis in the partition
is complete and accurate. You can export the partition for the top-level design without
any auxiliary components that are instantiated outside the partition being exported.

If your design team uses makefiles and design partition scripts, the project lead can
use the make command with the master_makefile command created by the scripts
to export the partitions and create .qxp files. When a partition has been compiled and
is ready to be integrated into the top-level design, you can export the partition with
option on the Export Design Partition dialog box, available from the Project menu.

1.7.4. Viewing the Contents of a Intel Quartus Prime Exported Partition
File (.qxp)

The QXP report allows you to view a summary of the contents in a .qxp when you
open the file in the Intel Quartus Prime software. The .qxp is a binary file that
contains compilation results so the file cannot be read in a text editor. The QXP report
opens in the main Intel Quartus Prime window and contains summary information
including a list of the I/0 ports, resource usage summary, and a list of the
assignments used for the exported partition.

1.7.5. Integrating Partitions into the Top-Level Design

To integrate a partition developed in a separate Intel Quartus Prime project into the
top-level design, you can simply add the .qxp as a source file in your top-level design
(just like a Verilog or VHDL source file). You can also use the Import Design
Partition dialog box to import the partition.

The .qxp contains the design block exported from the partition and has the same
name as the partition. When you instantiate the design block into a top-level design
and include the .qxp as a source file, the software adds the exported netlist to the
database for the top-level design. The .qxp port names are case sensitive if the
original HDL of the partition was case sensitive.

When you use a .qxp as a source file in this way, you can choose whether you want
the .qxp to be a partition in the top-level design. If you do not designate the .qxp
instance as a partition, the software reuses just the post-synthesis compilation results
from the .qxp, removes unconnected ports and unused logic just like a regular source
file, and then performs placement and routing.

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

43

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Intel® Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design
® 683283 | 2018.09.24

If you assigned the .qxp instance as a partition, you can set the netlist type in the
Design Partitions Window to choose the level of results to preserve from the .qxp. To
preserve the placement and routing results from the exported partition, set the netlist
type to Post-Fit for the .qxp partition in the top-level design. If you assign the
instance as a design partition, the partition boundary is preserved.

Related Information
Impact of Design Partitions on Design Optimization on page 29

1.7.5.1. Integrating Assignments from the .qxp

The Intel Quartus Prime software filters assignments from .qxp files to include
appropriate assignments in the top-level design. The assignments in the .qxp are
treated like assignments made in an HDL source file, and are not listed in the Intel
Quartus Prime Settings File (.qsf) for the top-level design. Most assignments from
the .qxp can be overridden by assignments in the top-level design.

1.7.5.1.1. Design Partition Assignments Within the Exported Partition

Design partition assignments defined within a separate Intel Quartus Prime project are
not added to the top-level design. All logic under the exported partition in the project
hierarchy is treated as single instance in the .qxp.

1.7.5.1.2. Synopsys Design Constraint Files for the Intel Quartus Prime Timing Analyzer

Timing assignments made for the Intel Quartus Prime Timing Analyzer in a Synopsys
Design Constraint File (.sdc) in the lower-level partition project are not added to the
top-level design. Ensure that the top-level design includes all of the timing
requirements for the entire project.

Related Information

Best Practices for Incremental Compilation Partitions and Floorplan Assignments
documentation on page 71

1.7.5.1.3. Global Assignments

The project lead should make all global project-wide assignments in the top-level
design. Global assignments from the exported partition's project are not added to the
top-level design. When it is possible for a particular constraint, the global assignment
is converted to an instance-specific assignment for the exported design partition.

1.7.5.1.4. LogicLock Region Assignments

The project lead typically creates LogicLock region assignments in the top-level design
for any lower-level partition designs where designer or IP providers plan to export
post-fit information to be used in the top-level design, to help avoid placement
conflicts between partitions. When you use the .qxp as a source file, LogicLock
constraints from the exported partition are applied in the top-level design, but will not
appear in your .qsf file or LogicLock Regions window for you to view or edit. The
LogicLock region itself is not required to constrain the partition placement in the
top-level design if the netlist type is set to Post-Fit, because the netlist contains all
the placement information.

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

44

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Intel® Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design
683283 | 2018.09.24 ®

1.7.5.2. Integrating Encrypted IP Cores from .qxp Files

Proper license information is required to compile encrypted IP cores. If an IP core is
exported as a .qxp from another Intel Quartus Prime project, the top-level designer
instantiating the .qxp must have the correct license. The software requires a full
license to generate an unrestricted programming file. If you do not have a license, but
the IP in the .qxp was compiled with OpenCore Plus hardware evaluation support, you
can generate an evaluation programming file without a license. If the IP supports
OpenCore simulation only, you can fully compile the design and generate a simulation
netlist, but you cannot create programming files unless you have a full license.

1.7.5.3. Advanced Importing Options

You can use advanced options in the Import Design Partition dialog box to integrate
a partition developed in a separate Intel Quartus Prime project into the top-level
design. The import process adds more control than using the .qxp as a source file,
and is useful only in the following circumstances:

e If you want LogicLock regions in your top-level design (.qsf)—If you have
regions in your partitions that are not also in the top-level design, the regions will
be added to your .qsf during the import process.

o If you want different settings or placement for different instantiations of
the same entity—You can control the setting import process with the advanced
import options, and specify different settings for different instances of the
same .qxp design block.

When you use the Import Design Partition dialog box to integrate a partition into
the top-level design, the import process sets the partition’s netlist type to Imported
in the Design Partitions window.

After you compile the entire design, if you make changes to the place-and-route
results (such as movement of an imported LogicLock region), use the Post-Fit netlist
type on subsequent compilations. To discard an imported netlist and recompile from
source code, you can compile the partition with the netlist type set to Source File and
be sure to include the relevant source code in the top-level design. The import process
sets the partition’s Fitter Preservation Level to the setting with the highest degree of
preservation supported by the imported netlist. For example, if a post-fit netlist is
imported with placement information, the Fitter Preservation Level is set to
Placement, but you can change it to the Netlist Only value.

When you import a partition from a .qxp, the .qxp itself is not part of the top-level
design because the netlists from the file have been imported into the project
database. Therefore if a new version of a .qxp is exported, the top-level designer
must perform another import of the .qxp.

When you import a partition into a top-level design with the Import Design
Partition dialog box, the software imports relevant assignments from the partition
into the top-level design. If required, you can change the way some assignments are
imported, as described in the following subsections.

Related Information

e Netlist Type for Design Partitions on page 33

e Fitter Preservation Level for Design Partitions on page 34

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

45

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Intel® Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design
® 683283 | 2018.09.24

1.7.5.3.1. Importing LogicLock Assignments

LogicLock regions are set to a fixed size when imported. If you instantiate multiple
instances of a subdesign in the top-level design, the imported LogicLock regions are
set to a Floating location. Otherwise, they are set to a Fixed location. You can change
the location of LogicLock regions after they are imported, or change them to a Floating
location to allow the software to place each region but keep the relative locations of
nodes within the region wherever possible. To preserve changes made to a partition
after compilation, use the Post-Fit netlist type.

The LogicLock Member State assignment is set to Locked to signify that it is a
preserved region.

LogicLock back-annotation and node location data is not imported because the .qxp
contains all of the relevant placement information. Altera strongly recommends that
you do not add to or delete members from an imported LogicLock region.

Related Information

Changing Partition Placement with LogicLock Changes on page 57

1.7.5.3.2. Advanced Import Settings

The Advanced Import Settings dialog box allows you to disable assignment import
and specify additional options that control how assignments and regions are
integrated when importing a partition into a top-level design, including how to resolve
assignment conflicts.

1.8. Team-Based Design Optimization and Third-Party IP Delivery
Scenarios

1.8.1. Using an Exported Partition to Send to a Design Without Including
Source Files

Scenario background: A designer wants to produce a design block and needs to send
out their design, but to preserve their IP, they prefer to send a synthesized netlist
instead of providing the HDL source code to the recipient. You can use this flow to
implement a black box.

Use this flow to package a full design as a single source file to send to an end
customer or another design location.

As the sender in this scenario perform the following steps to export a design block:

1. Provide the device family name to the recipient. If you send placement
information with the synthesized netlist, also provide the exact device selection so
they can set up their project to match.

2. Create a black box wrapper file that defines the port interface for the design block
and provide it to the recipient for instantiating the block as an empty partition in
the top-level design.

3. Create a Intel Quartus Prime project for the design block, and complete the
design.

4. Export the level of hierarchy into a single .qxp. Following a successful compilation
of the project, you can generate a .qxp from the GUI, the command-line, or with
Tcl commands, as described in the following:

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

46

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Intel® Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design
683283 | 2018.09.24 ®

e If you are using the Intel Quartus Prime GUI, use the Export Design
Partition dialog box.

e If you are using command-line executables, run quartus_cdb with the —-
incremental_compilation_export option.

e If you are using Tcl commands, use the following command: execute_flow
—-incremental_compilation_export.

5. Select the option to include just the Post-synthesis netlist if you do not have to
send placement information. If the recipient wants to reproduce your exact Fitter
results, you can select the Post-fitting netlist option, and optionally enable
Export routing.

6. If a partition contains sub-partitions, then the sub-partitions are automatically
flattened and merged into the partition netlist before exporting. You can change
this behavior and preserve the sub-partition hierarchy by turning off the Flatten
sub-partitions option on the Export Design Partition dialog box. Optionally,
you can use the —dont_flatten sub-option for the export_partition Tcl
command.

7. Provide the .qxp to the recipient. Note that you do not have to send any of your
design source code.

As the recipient in this example, first create a Intel Quartus Prime project for your
top-level design and ensure that your project targets the same device (or at least the
same device family if the .qxp does not include placement information), as specified
by the IP designer sending the design block. Instantiate the design block using the
port information provided, and then incorporate the design block into a top-level
design.

Add the .qxp from the IP designer as a source file in your Intel Quartus Prime project
to replace any empty wrapper file. If you want to use just the post-synthesis
information, you can choose whether you want the file to be a partition in the
top-level design. To use the post-fit information from the .qxp, assign the instance as
a design partition and set the netlist type to Post-Fit.

Related Information
e Creating Design Partitions on page 14
e Netlist Type for Design Partitions on page 33

1.8.2. Creating Precompiled Design Blocks (or Hard-Wired Macros) for
Reuse

Scenario background: An IP provider wants to produce and sell an IP core for a
component to be used in higher-level systems. The IP provider wants to optimize the
placement of their block for maximum performance in a specific Altera device and
then deliver the placement information to their end customer. To preserve their IP,
they also prefer to send a compiled netlist instead of providing the HDL source code to
their customer.

Use this design flow to create a precompiled IP block (sometimes known as a
hard-wired macro) that can be instantiated in a top-level design. This flow provides
the ability to export a design block with post-synthesis or placement (and, optionally,
routing) information and to import any number of copies of this pre-compiled block
into another design.

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

47

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Intel® Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design
® 683283 | 2018.09.24

The customer first specifies which Altera device is being used for this project and
provides the design specifications.

As the IP provider in this example, perform the following steps to export a preplaced
IP core (or hard macro):

1. Create a black box wrapper file that defines the port interface for the IP core and
provide the file to the customer to instantiate as an empty partition in the top-
level design.

Create a Intel Quartus Prime project for the IP core.
Create a LogicLock region for the design hierarchy to be exported.

Using a LogicLock region for the IP core allows the customer to create an empty
placeholder region to reserve space for the IP in the design floorplan and ensures
that there are no conflicts with the top-level design logic. Reserved space also
helps ensure the IP core does not affect the timing performance of other logic in
the top-level design. Additionally, with a LogicLock region, you can preserve
placement either absolutely or relative to the origin of the associated region. This
is important when a .qxp is imported for multiple partition hierarchies in the same
project, because in this case, the location of at least one instance in the top-level
design does not match the location used by the IP provider.

4. 1If required, add any logic (such as PLLs or other logic defined in the customer'’s
top-level design) around the design hierarchy to be exported. If you do so, create
a design partition for the design hierarchy that will exported as an IP core.

5. Optimize the design and close timing to meet the design specifications.
Export the level of hierarchy for the IP core into a single .qxp.

7. Provide the .qxp to the customer. Note that you do not have to send any of your
design source code to the customer; the design netlist and placement and routing
information is contained within the .qxp.

Related Information

e Creating Design Partitions on page 65

e Netlist Type for Design Partitions on page 33

¢ Changing Partition Placement with LogicLock Changes on page 57

Incorporate IP Core

As the customer in this example, incorporate the IP core in your design by performing
the following steps:

1. Create a Intel Quartus Prime project for the top-level design that targets the same
device and instantiate a copy or multiple copies of the IP core. Use a black box
wrapper file to define the port interface of the IP core.

Perform Analysis and Elaboration to identify the design hierarchy.

Create a design partition for each instance of the IP core with the netlist type set
to Empty.

4. You can now continue work on your part of the design and accept the IP core from
the IP provider when it is ready.

5. Include the .qxp from the IP provider in your project to replace the empty
wrapper-file for the IP instance. Or, if you are importing multiple copies of the
design block and want to import relative placement, follow these additional steps:

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

48

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Intel® Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design
683283 | 2018.09.24 ®

a. Use the Import command to select each appropriate partition hierarchy. You
can import a .qxp from the GUI, the command-line, or with Tcl commands:

e If you are using the Intel Quartus Prime GUI, use the Import Design
Partition command.

e If you are using command-line executables, run quartus_cdb with the
incremental_compilation_import option.

e If you are using Tcl commands, use the following
command:execute_Fflow -incremental_compilation_import.

b. When you have multiple instances of the IP block, you can set the imported
LogicLock regions to floating, or move them to a new location, and the
software preserves the relative placement for each of the imported modules
(relative to the origin of the LogicLock region). Routing information is
preserved whenever possible.

Note: The Fitter ignores relative placement assignments if the LogicLock
region’s location in the top-level design is not compatible with the
locations exported in the .qxp.

6. You can control the level of results preservation with the Netlist Type setting.

If the IP provider did not define a LogicLock region in the exported partition, the
software preserves absolute placement locations and this leads to placement
conflicts if the partition is imported for more than one instance

1.8.3. Designing in a Team-Based Environment

Scenario background: A project includes several lower-level design blocks that are
developed separately by different designers and instantiated exactly once in the
top-level design.

This scenario describes how to use incremental compilation in a team-based design
environment where each designer has access to the top-level project framework, but
wants to optimize their design in a separate Intel Quartus Prime project before
integrating their design block into the top-level design.

As the project lead in this scenario, perform the following steps to prepare the
top-level design:

1. Create a new Intel Quartus Prime project to ultimately contain the full
implementation of the entire design and include a "skeleton" or framework of the
design that defines the hierarchy for the subdesigns implemented by separate

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

49

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Intel® Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design
® 683283 | 2018.09.24

designers. The top-level design implements the top-level entity in the design and
instantiates wrapper files that represent each subdesign by defining only the port
interfaces, but not the implementation.

2. Make project-wide settings. Select the device, make global assignments such as
device I/0 ports, define the top-level timing constraints, and make any global
signal allocation constraints to specify which signals can use global routing
resources.

3. Make design partition assignments for each subdesign and set the netlist type for
each design partition to be imported to Empty in the Design Partitions window.

4. Create LogicLock regions to create a design floorplan for each of the partitions
that will be developed separately. This floorplan should consider the connectivity
between partitions and estimates of the size of each partition based on any initial
implementation numbers and knowledge of the design specifications.

5. Provide the top-level project framework to partition designers using one of the
following procedures:

e Allow access to the full project for all designers through a source control
system. Each designer can check out the projects files as read-only and work
on their blocks independently. This design flow provides each designer with
the most information about the full design, which helps avoid resource
conflicts and makes design integration easy.

e Provide a copy of the top-level Intel Quartus Prime project framework for each
designer. You can use the Copy Project command on the Project menu or
create a project archive.

Exporting Your Partition

As the designer of a lower-level design block in this scenario, design and optimize your
partition in your copy of the top-level design, and then follow these steps when you
have achieved the desired compilation results:

1. On the Project menu, click Export Design Partition.

2. In the Export Design Partition dialog box, choose the netlist(s) to export. You
can export a Post-synthesis netlist if placement or performance preservation is not
required, to provide the most flexibility for the Fitter in the top-level design. Select
Post-fit netlist to preserve the placement and performance of the lower-level
design block, and turn on Export routing to include the routing information, if
required. One .qxp can include both post-synthesis and post-fitting netlists.

3. Provide the .qxp to the project lead.

Integrating Your Partitions

Finally, as the project lead in this scenario, perform these steps to integrate the .qxp
files received from designers of each partition:

1. Add the .qxp as a source file in the Intel Quartus Prime project, to replace any
empty wrapper file for the previously Empty partition.

2. Change the netlist type for the partition from Empty to the required level of
results preservation.

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

50

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Intel® Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design
683283 | 2018.09.24 ®

1.8.4. Enabling Designers on a Team to Optimize Independently

Scenario background: A project consists of several lower-level design blocks that are
developed separately by different designers who do not have access to a shared
top-level project framework. This scenario is similar to creating precompiled design
blocks for resuse, but assumes that there are several design blocks being developed
independently (instead of just one IP block), and the project lead can provide some
information about the design to the individual designers. If the designers have shared
access to the top-level design, use the instructions for designing in a team-based
environment.

This scenario assumes that there are several design blocks being developed
independently (instead of just one IP block), and the project lead can provide some
information about the design to the individual designers.

This scenario describes how to use incremental compilation in a team-based design
environment where designers or IP developers want to fully optimize the placement
and routing of their design independently in a separate Intel Quartus Prime project
before sending the design to the project lead. This design flow requires more planning
and careful resource allocation because design blocks are developed independently.

Related Information

e Creating Precompiled Design Blocks (or Hard-Wired Macros) for Reuse on page 47

¢ Designing in a Team-Based Environment on page 49

1.8.4.1. Preparing Your Top-level Design

As the project lead in this scenario, perform the following steps to prepare the
top-level design:

1. Create a new Intel Quartus Prime project to ultimately contain the full
implementation of the entire design and include a “skeleton” or framework of the
design that defines the hierarchy for the subdesigns implemented by separate
designers. The top-level design implements the top-level entity in the design and
instantiates wrapper files that represent each subdesign by defining only the port
interfaces but not the implementation.

2. Make project-wide settings. Select the device, make global assignments such as
device I/0 ports, define the top-level timing constraints, and make any global
signal constraints to specify which signals can use global routing resources.

3. Make design partition assignments for each subdesign and set the netlist type for
each design partition to be imported to Empty in the Design Partitions window.

4. Create LogicLock regions. This floorplan should consider the connectivity between
partitions and estimates of the size of each partition based on any initial
implementation numbers and knowledge of the design specifications.

5. Provide the constraints from the top-level design to partition designers using one
of the following procedures.

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

51

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Intel® Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design
® 683283 | 2018.09.24

e Use design partition scripts to pass constraints and generate separate Intel
Quartus Prime projects. On the Project menu, use the Generate Design
Partition Scripts command, or run the script generator from a Tcl or
command prompt. Make changes to the default script options as required for
your project. Altera recommends that you pass all the default constraints,
including LogicLock regions, for all partitions and virtual pin location
assignments. If partitions have not already been created by the other
designers, use the partition script to set up the projects so that you can easily
take advantage of makefiles. Provide each partition designer with the Tcl file to
create their project with the appropriate constraints. If you are using
makefiles, provide the makefile for each partition.

e Use documentation or manually-created scripts to pass all constraints and
assignments to each partition designer.

1.8.4.2. Exporting Your Design

As the designer of a lower-level design block in this scenario, perform the appropriate
set of steps to successfully export your design, whether the design team is using
makefiles or exporting and importing the design manually.

If you are using makefiles with the design partition scripts, perform the following
steps:

1. Use the make command and the makefile provided by the project lead to create a
Intel Quartus Prime project with all design constraints, and compile the project.

2. The information about which source file should be associated with which partition
is not available to the software automatically, so you must specify this information
in the makefile. You must specify the dependencies before the software rebuilds
the project after the initial call to the makefile.

3. When you have achieved the desired compilation results and the design is ready to
be imported into the top-level design, the project lead can use the
master_makefile command to export this partition and create a .qxp, and then
import it into the top-level design.

Exporting Without Makefiles

If you are not using makefiles, perform the following steps:

1. 1If you are using design partition scripts, source the Tcl script provided by the
Project Lead to create a project with the required settings:

e To source the Tcl script in the Intel Quartus Prime software, on the Tools
menu, click Utility Windows to open the Tcl console. Navigate to the script’s
directory, and type the following command: source <fil enanme>.

e To source the Tcl script at the system command prompt, type the following
command: quartus_cdb -t <fil enane>.tcl

2. If you are not using design partition scripts, create a new Intel Quartus Prime
project for the subdesign, and then apply the following settings and constraints to
ensure successful integration:

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

52

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Intel® Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design
683283 | 2018.09.24 ®

e Make LogicLock region assignments and global assignments (including clock
settings) as specified by the project lead.

e Make Virtual Pin assignments for ports which represent connections to core
logic instead of external device pins in the top-level design.

e Make floorplan location assignments to the Virtual Pins so they are placed in
their corresponding regions as determined by the top-level design. This
provides the Fitter with more information about the timing constraints
between modules. Alternatively, you can apply timing I/O constraints to the
paths that connect to virtual pins.

3. Proceed to compile and optimize the design as needed.

When you have achieved the desired compilation results, on the Project menu,
click Export Design Partition.

5. In the Export Design Partition dialog box, choose the netlist(s) to export. You
can export a Post-synthesis netlist instead if placement or performance
preservation is not required, to provide the most flexibility for the Fitter in the top-
level design. Select Post-fit to preserve the placement and performance of the
lower-level design block, and turn on Export routing to include the routing
information, if required. One .qxp can include both post-synthesis and post-fitting
netlists.

6. Provide the .qxp to the project lead.

1.8.4.3. Importing Your Design

Finally, as the project lead in this scenario, perform the appropriate set of steps to
import the .qxp files received from designers of each partition.

If you are using makefiles with the design partition scripts, perform the following
steps:

1. Use the master_makefile command to export each partition and create .qxp
files, and then import them into the top-level design.

2. The software does not have all the information about which source files should be
associated with which partition, so you must specify this information in the
makefile. The software cannot rebuild the project if source files change unless you
specify the dependencies.

Importing Without Makefiles

If you are not using makefiles, perform the following steps:

1. Add the .qxp as a source file in the Intel Quartus Prime project, to replace any
empty wrapper file for the previously Empty partition.

2. Change the netlist type for the partition from Empty to the required level of results
preservation.

1.8.4.4. Resolving Assignment Conflicts During Integration

When integrating lower-level design blocks, the project lead may notice some
assignment conflicts. This can occur, for example, if the lower-level design block
designers changed their LogicLock regions to account for additional logic or placement
constraints, or if the designers applied I/O port timing constraints that differ from
constraints added to the top-level design by the project lead. The project lead can
address these conflicts by explicitly importing the partitions into the top-level design,

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

53

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Intel® Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design
® 683283 | 2018.09.24

and using options in the Advanced Import Settings dialog box. After the project
lead obtains the .qxp for each lower-level design block from the other designers, use
the Import Design Partition command on the Project menu and specify the partition
in the top-level design that is represented by the lower-level design block .qxp.
Repeat this import process for each partition in the design. After you have imported
each partition once, you can select all the design partitions and use the Reimport
using latest import files at previous locations option to import all the files from
their previous locations at one time. To address assignment conflicts, the project lead
can take one or both of the following actions:

e Allow new assignments to be imported
¢ Allow existing assignments to be replaced or updated

When LogicLock region assignment conflicts occur, the project lead may take one of
the following actions:

e Allow the imported region to replace the existing region
e Allow the imported region to update the existing region
e Skip assignment import for regions with conflicts

If the placement of different lower-level design blocks conflict, the project lead can
also set the set the partition’s Fitter Preservation Level to Netlist Only, which
allows the software to re-perform placement and routing with the imported netlist.

1.8.4.5. Importing a Partition to be Instantiated Multiple Times

In this variation of the design scenario, one of the lower-level design blocks is
instantiated more than once in the top-level design. The designer of the lower-level
design block may want to compile and optimize the entity once under a partition, and
then import the results as multiple partitions in the top-level design.

If you import multiple instances of a lower-level design block into the top-level design,
the imported LogicLock regions are automatically set to Floating status.

If you resolve conflicts manually, you can use the import options and manual
LogicLock assignments to specify the placement of each instance in the top-level
design.

1.8.5. Performing Design Iterations With Lower-Level Partitions

Scenario background: A project consists of several lower-level subdesigns that have
been exported from separate Intel Quartus Prime projects and imported into the top-
level design. In this example, integration at the top level has failed because the timing
requirements are not met. The timing requirements might have been met in each
individual lower-level project, but critical inter-partition paths in the top-level design
are causing timing requirements to fail.

After trying various optimizations in the top-level design, the project lead determines
that the design cannot meet the timing requirements given the current partition
placements that were imported. The project lead decides to pass additional
information to the lower-level partitions to improve the placement.

Use this flow if you re-optimize partitions exported from separate Intel Quartus Prime
projects by incorporating additional constraints from the integrated top-level design.

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

54

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Intel® Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design
683283 | 2018.09.24 ®

1.8.5.1. Providing the Complete Top-Level Project Framework

The best way to provide top-level design information to designers of lower-level
partitions is to provide the complete top-level project framework using the following
steps:

1. For all partitions other than the one(s) being optimized by a designer(s) in a
separate Intel Quartus Prime project(s), set the netlist type to Post-Fit.

2. Make the top-level design directory available in a shared source control system, if
possible. Otherwise, copy the entire top-level design project directory (including
database files), or create a project archive including the post-compilation
database.

3. Provide each partition designer with a checked-out version or copy of the top-level
design.

4. The partition designers recompile their designs within the new project framework
that includes the rest of the design's placement and routing information as well
top-level resource allocations and assignments, and optimize as needed.

5. When the results are satisfactory and the timing requirements are met, export the
updated partition as a .qxp.

1.8.5.2. Providing Information About the Top-Level Framework

If this design flow is not possible, you can generate partition-specific scripts for
individual designs to provide information about the top-level project framework with
these steps:

1. In the top-level design, on the Project menu, click Generate Design Partition
Scripts, or launch the script generator from Tcl or the command line.

2. If lower-level projects have already been created for each partition, you can turn
off the Create lower-level project if one does not exist option.

3. Make additional changes to the default script options, as necessary. Altera
recommends that you pass all the default constraints, including LogicLock regions,
for all partitions and virtual pin location assignments. Altera also recommends that
you add a maximum delay timing constraint for the virtual I/O connections in each
partition.

4. The Intel Quartus Prime software generates Tcl scripts for all partitions, but in this
scenario, you would focus on the partitions that make up the cross-partition
critical paths. The following assignments are important in the script:

— Virtual pin assignments for module pins not connected to device I/O ports in
the top-level design.

— Location constraints for the virtual pins that reflect the initial top-level
placement of the pin’s source or destination. These help make the lower-level
placement “aware” of its surroundings in the top-level design, leading to a
greater chance of timing closure during integration at the top level.

— INPUT_MAX_DELAY and OUTPUT_MAX_ DELAY timing constraints on the paths
to and from the I/O pins of the partition. These constrain the pins to optimize
the timing paths to and from the pins.

5. The partition designers source the file provided by the project lead.

— To source the Tcl script from the Intel Quartus Prime GUI, on the Tools menu,
click Utility Windows and open the Tcl console. Navigate to the script’s
directory, and type the following command:

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

55

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Intel® Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design
® 683283 | 2018.09.24

source <fil enane>

— To source the Tcl script at the system command prompt, type the following
command:

quartus_cdb -t <fil enane>._tcl

6. The partition designers recompile their designs with the new project information or
assignments and optimize as needed. When the results are satisfactory and the
timing requirements are met, export the updated partition as a .qxp.

The project lead obtains the updated .qxp files from the partition designers and
adds them to the top-level design. When a new .qxp is added to the files list, the
software will detect the change in the “source file” and use the new .qxp results
during the next compilation. If the project uses the advanced import flow, the
project lead must perform another import of the new .qxp.

You can now analyze the design to determine whether the timing requirements
have been achieved. Because the partitions were compiled with more information
about connectivity at the top level, it is more likely that the inter-partition paths
have improved placement which helps to meet the timing requirements.

1.9. Creating a Design Floorplan With LogicLock Regions

A floorplan represents the layout of the physical resources on the device. Creating a
design floorplan, or floorplanning, describe the process of mapping the logical design
hierarchy onto physical regions in the device floorplan. After you have partitioned the
design, you can create floorplan location assignments for the design to improve the
quality of results when using the incremental compilation design flow. Creating a
design floorplan is not a requirement to use an incremental compilation flow, but it is
recommended in certain cases. Floorplan location planning can be important for a
design that uses incremental compilation for the following reasons:

e To avoid resource conflicts between partitions, predominantly when partitions are
imported from another Intel Quartus Prime project

e To ensure a good quality of results when recompiling individual timing-critical
partitions

Design floorplan assignments prevent the situation in which the Fitter must place a
partition in an area of the device where most resources are already used by other
partitions. A physical region assignment provides a reasonable region to re-place logic
after a change, so the Fitter does not have to scatter logic throughout the available
space in the device.

Floorplan assignments are not required for non-critical partitions compiled as part of
the top-level design. The logic for partitions that are not timing-critical (such as simple
top-level glue logic) can be placed anywhere in the device on each recompilation, if
that is best for your design.

The simplest way to create a floorplan for a partitioned design is to create one
LogicLock region per partition (including the top-level partition). If you have a
compilation result for a partitioned design with no LogicLock regions, you can use the
Chip Planner with the Design Partition Planner to view the partition placement in the
device floorplan. You can draw regions in the floorplan that match the general location
and size of the logic in each partition. Or, initially, you can set each region with the
default settings of Auto size and Floating location to allow the Intel Quartus Prime
software to determine the preliminary size and location for the regions. Then, after
compilation, use the Fitter-determined size and origin location as a starting point for

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

56

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Intel® Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design
683283 | 2018.09.24 ®

your design floorplan. Check the quality of results obtained for your floorplan location
assignments and make changes to the regions as needed. Alternatively, you can
perform synthesis, and then set the regions to the required size based on resource
estimates. In this case, use your knowledge of the connections between partitions to
place the regions in the floorplan.

Once you have created an initial floorplan, you can refine the region using tools in the
Intel Quartus Prime software. You can also use advanced techniques such as creating
non-rectangular regions by merging LogicLock regions.

You can use the Incremental Compilation Advisor to check that your LogicLock regions
meet Altera’s guidelines.

Related Information
e Incremental Compilation Advisor on page 32

e Best Practices for Incremental Compilation Partitions and Floorplan Assignments
documentation on page 71

1.9.1. Creating and Manipulating LogicLock Regions

Options in the LogicLock Regions Properties dialog box, available from the
Assignments menu, allow you to enter specific sizing and location requirements for a
region. You can also view and refine the size and location of LogicLock regions in the
Intel Quartus Prime Chip Planner. You can select a region in the graphical interface in
the Chip Planner and use handles to move or resize the region.

Options in the Layer Settings panel in the Chip Planner allow you to create, delete,
and modify tasks to determine which objects, including LogicLock regions and design
partitions, to display in the Chip Planner.

1.9.2. Changing Partition Placement with LogicLock Changes

When a partition is assigned to a LogicLock region as part of a design floorplan, you
can modify the placement of a post-fit partition by moving the LogicLock region. Most
assignment changes do not initiate a recompilation of a partition if the netlist type
specifies that Fitter results should be preserved. For example, changing a pin
assignment does not initiate a recompilation; therefore, the design does not use the

new pin assignment unless you change the netlist type to Post Synthesis or Source
File.

Similarly, if a partition’s placement is preserved, and the partition is assigned to a
LogicLock region, the Fitter always reuses the corresponding LogicLock region size
specified in the post-fit netlist. That is, changes to the LogicLock Size setting do not
initiate refitting if a partition’s placement is preserved with the Post-Fit netlist type,
or with .qxp that includes post-fit information.

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

57

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Intel® Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design
® 683283 | 2018.09.24

However, you can use the LogicLock Origin location assignment to change or
fine-tune the previous Fitter results. When you change the Origin setting for a region,
the Fitter can move the region in the following manner, depending upon how the
placement is preserved for that region's members:

e When you set a new region Origin, the Fitter uses the new origin and replaces the
logic, preserving the relative placement of the member logic.

e When you set the region Origin to Floating, the following conditions apply:

— If the region’s member placement is preserved with an imported partition, the
Fitter chooses a new Origin and re-places the logic, preserving the relative
placement of the member logic within the region.

— If the region’s member placement is preserved with a Post-Fit netlist type,
the Fitter does not change the Origin location, and reuses the previous
placement results.

Related Information

What Changes Initiate the Automatic Resynthesis of a Partition? on page 35

1.10. Incremental Compilation Restrictions

1.10.1. When Timing Performance May Not Be Preserved Exactly

Timing performance might change slightly in a partition with placement and routing
preserved when other partitions are incorporated or re-placed and routed. Timing
changes are due to changes in parasitic loading or crosstalk introduced by the other
(changed) partitions. These timing changes are very small, typically less than 30 ps on
a timing path. Additional fan-out on routing lines when partitions are added can also
degrade timing performance.

To ensure that a partition continues to meet its timing requirements when other
partitions change, a very small timing margin might be required. The Fitter
automatically works to achieve such margin when compiling any design, so you do not
need to take any action.

1.10.2. When Placement and Routing May Not Be Preserved Exactly

The Fitter may have to refit affected nodes if the two nodes are assigned to the same
location, due to imported netlists or empty partitions set to re-use a previous post-fit
netlist. There are two cases in which routing information cannot be preserved exactly.
First, when multiple partitions are imported, there might be routing conflicts because
two lower-level blocks could be using the same routing wire, even if the floorplan
assighments of the lower-level blocks do not overlap. These routing conflicts are
automatically resolved by the Intel Quartus Prime Fitter re-routing on the affected
nets. Second, if an imported LogicLock region is moved in the top-level design, the
relative placement of the nodes is preserved but the routing cannot be preserved,
because the routing connectivity is not perfectly uniform throughout a device.

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

58

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Intel® Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design
683283 | 2018.09.24 ®

1.10.3. Using Incremental Compilation With Intel Quartus Prime Archive
Files

The post-synthesis and post-fitting netlist information for each design partition is
stored in the project database, the incremental_db directory. When you archive a
project, the database information is not included in the archive unless you include the
compilation database in the .qar file.

If you want to re-use post-synthesis or post-fitting results, include the database files
in the Archive Project dialog box so compilation results are preserved. Click
Advanced, and choose a file set that includes the compilation database, or turn on
Incremental compilation database files to create a Custom file set.

When you include the database, the file size of the .qar archive file may be
significantly larger than an archive without the database.

The netlist information for imported partitions is already saved in the

corresponding .qxp. Imported .qxp files are automatically saved in a subdirectory
called imported_partitions, so you do not need to archive the project database to
keep the results for imported partitions. When you restore a project archive, the
partition is automatically reimported from the .qxp in this directory if it is available.

For new device families with advanced support, a version-compatible database might
not be available. In this case, the archive will not include the compilation database. If
you require the database files to reproduce the compilation results in the same Intel
Quartus Prime version, you can use the following command-line option to archive a
full database:

quartus_sh --archive -use_file_set full _db [-revision <revision
name>]<pr oj ect name>

1.10.4. Formal Verification Support

You cannot use design partitions for incremental compilation if you are creating a
netlist for a formal verification tool.

1.10.5. Signal Probe Pins and Engineering Change Orders

ECO and Signal Probe changes are performed only during ECO and Signal Probe
compilations. Other compilation flows do not preserve these netlist changes.

When incremental compilation is turned on and your design contains one or more
design partitions, partition boundaries are ignored while making ECO changes and
Signal Probe signal settings. However, the presence of ECO and/or Signal Probe
changes does not affect partition boundaries for incremental compilation. During
subsequent compilations, ECO and Signal Probe changes are not preserved regardless
of the Netlist Type or Fitter Preservation Level settings. To recover ECO changes
and Signal Probe signals, you must use the Change Manager to re-apply the ECOs
after compilation.

For partitions developed independently in separate Intel Quartus Prime projects, the
exported netlist includes all currently saved ECO changes and Signal Probe signals. If
you make any ECO or Signal Probe changes that affect the interface to the lower-level
partition, the software issues a warning message during the export process that this

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

59

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Intel® Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design
® 683283 | 2018.09.24

netlist does not work in the top-level design without modifying the top-level HDL code
to reflect the lower-level change. After integrating the .qxp partition into the top-level
design, the ECO changes will not appear in the Change Manager.

Related Information
¢ Quick Design Debugging Using Signal Probe
e Engineering Change Orders with the Chip Planner

1.10.6. Signal Tap Logic Analyzer in Exported Partitions

You can use the Signal Tap Embedded Logic Analyzer in any project that you can
compile and program into an Altera device.

When incremental compilation is turned on, debugging logic is added to your design
incrementally and you can tap post-fitting nodes and modify triggers and configuration
without recompiling the full design. Use the appropriate filter in the Node Finder to
find your node names. Use Signal Tap: post-fitting if the netlist type is Post-Fit to
incrementally tap node names in the post-fit netlist database. Use Signal Tap: pre-
synthesis if the netlist type is Source File to make connections to the source file
(pre-synthesis) node names when you synthesize the partition from the source code.

If incremental compilation is turned off, the debugging logic is added to the design
during Analysis and Elaboration, and you cannot tap post-fitting nodes or modify
debug settings without fully compiling the design.

For design partitions that are being developed independently in separate Intel Quartus
Prime projects and contain the logic analyzer, when you export the partition, the Intel
Quartus Prime software automatically removes the Signal Tap logic analyzer and
related SLD_HUB logic. You can tap any nodes in a Intel Quartus Prime project,
including nodes within .qxp partitions. Therefore, you can use the logic analyzer
within the full top-level design to tap signals from the .qxp partition.

You can also instantiate the Signal Tap IP core directly in your lower-level design
(instead of using an .stp file) and export the entire design to the top level to include
the logic analyzer in the top-level design.

Related Information
Design Debugging with the Signal Tap Logic Analyzer documentation

1.10.7. External Logic Analyzer Interface in Exported Partitions

You can use the Logic Analyzer Interface in any project that you can compile and
program into an Altera device. You cannot export a partition that uses the Logic
Analyzer Interface. You must disable the Logic Analyzer Interface feature and
recompile the design before you export the design as a partition.

Related Information

In-System Debugging Using External Logic Analyzers

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

60

https://www.intel.com/content/www/us/en/docs/programmable/683552/current/quick-design-debugging-using.html
https://www.intel.com/content/www/us/en/docs/programmable/683230/current/engineering-change-orders-with-the-chip-41583.html
https://www.intel.com/content/www/us/en/docs/programmable/683552/current/design-debugging-with-the-logic-analyzer-69524.html
https://www.intel.com/content/www/us/en/docs/programmable/683552/current/in-system-debugging-using-external-logic-89197.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Intel® Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design
683283 | 2018.09.24 ®

1.10.8. Assignments Made in HDL Source Code in Exported Partitions

Assignments made with I/O primitives or the altera_attribute HDL synthesis
attribute in lower-level partitions are passed to the top-level design, but do not appear
in the top-level .qsf file or Assignment Editor. These assignments are considered part
of the source netlist files. You can override assignments made in these source files by
changing the value with an assignment in the top-level design.

1.10.9. Design Partition Script Limitations

Related Information
Generating Design Partition Scripts on page 42

1.10.9.1. Warnings About Extra Clocks Due to Design Partition Scripts

The generated scripts include applicable clock information for all clock signals in the
top-level design. Some of those clocks may not exist in the lower-level projects, so
you may see warning messages related to clocks that do not exist in the project. You
can ignore these warnings or edit your constraints so the messages are not generated.

1.10.9.2. Synopsys Design Constraint Files for the Timing Analyzer in Design
Partition Scripts

After you have compiled a design using Timing Analyzer constraints, and the timing
assignments option is turned on in the scripts, a separate Tcl script is generated to
create an .sdc file for each lower-level project. This script includes only clock
constraints and minimum and maximum delay settings for the Timing Analyzer.

Note: PLL settings and timing exceptions are not passed to lower-level designs in the scripts.

Related Information

Best Practices for Incremental Compilation Partitions and Floorplan Assignments
documentation on page 71

1.10.9.3. Wildcard Support in Design Partition Scripts

When applying constraints with wildcards, note that wildcards are not analyzed across
hierarchical boundaries. For example, an assignment could be made to these nodes:
Top|A:zinst]B:inst]*, where A and B are lower-level partitions, and hierarchy B is
a child of A, that is B is instantiated in hierarchy A. This assignment is applied to
modules A, B, and all children instances of B. However, the assignment Top]A: inst]
B:inst* is applied to hierarchy A, but is not applied to the B instances because the
single level of hierarchy represented by B: inst* is not expanded into multiple levels
of hierarchy. To avoid this issue, ensure that you apply the wildcard to the hierarchical
boundary if it should represent multiple levels of hierarchy.

When using the wildcard to represent a level of hierarchy, only single wildcards are
supported. This means assignments such as Top|A: inst|*|B:inst]* are not
supported. The Intel Quartus Prime software issues a warning in these cases.

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

61

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Intel® Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design
® 683283 | 2018.09.24

1.10.9.4. Derived Clocks and PLLs in Design Partition Scripts

If a clock in the top level is not directly connected to a pin of a lower-level partition,
the lower-level partition does not receive assignments and constraints from the
top-level pin in the design partition scripts.

This issue is of particular importance for clock pins that require timing constraints and
clock group settings. Problems can occur if your design uses logic or inversion to
derive a new clock from a clock input pin. Make appropriate timing assignments in
your lower-level Intel Quartus Prime project to ensure that clocks are not
unconstrained.

If the lower-level design uses the top-level project framework from the project lead,
the design will have all the required information about the clock and PLL settings.
Otherwise, if you use a PLL in your top-level design and connect it to lower-level
partitions, the lower-level partitions do not have information about the multiplication
or phase shift factors in the PLL. Make appropriate timing assignments in your
lower-level Intel Quartus Prime project to ensure that clocks are not unconstrained or
constrained with the incorrect frequency. Alternatively, you can manually duplicate the
top-level derived clock logic or PLL in the lower-level design file to ensure that you
have the correct multiplication or phase-shift factors, compensation delays and other
PLL parameters for complete and accurate timing analysis. Create a design partition
for the rest of the lower-level design logic for export to the top level. When the
lower-level design is complete, export only the partition that contains the relevant
logic.

1.10.9.5. Pin Assignments for GXB and LVDS Blocks in Design Partition Scripts

Pin assignments for high-speed GXB transceivers and hard LVDS blocks are not
written in the scripts. You must add the pin assignments for these hard IP blocks in
the lower-level projects manually.

1.10.9.6. Virtual Pin Timing Assighnments in Design Partition Scripts

Design partition scripts use INPUT_MAX_DELAY and OUTPUT_MAX_DELAY
assignments to specify inter-partition delays associated with input and output pins,
which would not otherwise be visible to the project. These assignments require that
the software specify the clock domain for the assignment and set this clock domain
tO ”ox n.

This clock domain assignment means that there may be some paths constrained and
reported by the timing analysis engine that are not required.

To restrict which clock domains are included in these assignments, edit the generated
scripts or change the assignments in your lower-level Intel Quartus Prime project. In
addition, because there is no known clock associated with the delay assignments, the
software assumes the worst-case skew, which makes the paths seem more timing
critical than they are in the top-level design. To make the paths appear less
timing-critical, lower the delay values from the scripts. If required, enter negative
numbers for input and output delay values.

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

62

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Intel® Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design
683283 | 2018.09.24 ®

1.10.9.7. Top-Level Ports that Feed Multiple Lower-Level Pins in Design Partition
Scripts

When a single top-level I/O port drives multiple pins on a lower-level module, it
unnecessarily restricts the quality of the synthesis and placement at the lower-level.
This occurs because in the lower-level design, the software must maintain the
hierarchical boundary and cannot use any information about pins being logically
equivalent at the top level. In addition, because I/O constraints are passed from the
top-level pin to each of the children, it is possible to have more pins in the lower level
than at the top level. These pins use top-level I/O constraints and placement options
that might make them impossible to place at the lower level. The software avoids this
situation whenever possible, but it is best to avoid this design practice to avoid these
potential problems. Restructure your design so that the single I/O port feeds the
design partition boundary and the single connection is split into multiple signals within
the lower-level partition.

1.10.10. Restrictions on IP Core Partitions

The Intel Quartus Prime software does not support partitions for IP core instantiations.
If you use the parameter editor to customize an IP core variation, the IP core
generated wrapper file instantiates the IP core. You can create a partition for the IP
core generated wrapper file.

The Intel Quartus Prime software does not support creating a partition for inferred IP
cores (that is, where the software infers an IP core to implement logic in your design).
If you have a module or entity for the logic that is inferred, you can create a partition
for that hierarchy level in the design.

The Intel Quartus Prime software does not support creating a partition for any Intel
Quartus Prime internal hierarchy that is dynamically generated during compilation to
implement the contents of an IP core.

1.10.11. Restrictions on Intel Arria® 10 Transceiver

The Intel Quartus Prime software does not support partitions for Intel Arria® 10
Transceiver PHY or Transceiver PLL. This restriction applies to creating partitions,
exporting and importing partitions through Intel Quartus Prime Exported Partition File
(-gxp). If your design block contains Intel Arria 10 Transceiver PHY or Transceiver
PLL, you must exclude the transceivers before creating partition for the design block.

Related Information

Knowledge Base

1.10.12. Register Packing and Partition Boundaries

The Intel Quartus Prime software performs register packing during compilation
automatically. However, when incremental compilation is enabled, logic in different
partitions cannot be packed together because partition boundaries might prevent
cross-boundary optimization. This restriction applies to all types of register packing,
including I/0 cells, DSP blocks, sequential logic, and unrelated logic. Similarly, logic
from two partitions cannot be packed into the same ALM.

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

63

https://www.altera.com/support/support-resources/knowledge-base/tools/2017/why-do-i-get-compilation-error-when-my-design-partition-contains.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Intel® Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design
® 683283 | 2018.09.24

1.10.13. I/O Register Packing

Cross-partition register packing of I/0 registers is allowed in certain cases where your
input and output pins exist in the top-level hierarchy (and the Top partition), but the
corresponding I/0 registers exist in other partitions.

The following specific circumstances are required for input pin cross-partition register
packing:

e The input pin feeds exactly one register.

e The path between the input pin and register includes only input ports of partitions
that have one fan-out each.

The following specific circumstances are required for output register cross-partition
register packing:

e The register feeds exactly one output pin.
e The output pin is fed by only one signal.

e The path between the register and output pin includes only output ports of
partitions that have one fan-out each.

Output pins with an output enable signal cannot be packed into the device I/0 cell if
the output enable logic is part of a different partition from the output register. To allow
register packing for output pins with an output enable signal, structure your HDL code
or design partition assignments so that the register and tri-state logic are defined in
the same partition.

Bidirectional pins are handled in the same way as output pins with an output enable
signal. If the registers that need to be packed are in the same partition as the tri-state
logic, you can perform register packing.

The restrictions on tri-state logic exist because the I/O atom (device primitive) is
created as part of the partition that contains tri-state logic. If an I/O register and its
tri-state logic are contained in the same partition, the register can always be packed
with tri-state logic into the I/O atom. The same cross-partition register packing
restrictions also apply to I/O atoms for input and output pins. The I/O atom must feed
the I/0 pin directly with exactly one signal. The path between the I/O atom and the
I/0 pin must include only ports of partitions that have one fan-out each.

Related Information

Best Practices for Incremental Compilation Partitions and Floorplan Assignments
documentation on page 71

1.11. Scripting Support

You can run procedures and make settings described in this chapter in a Tcl script or
at a command-line prompt.

1.11.1. Tcl Scripting and Command-Line Examples

The - :quartus::incremental_compilation Tcl package contains a set of
functions for manipulating design partitions and settings related to the incremental
compilation feature.

Intel Quartus Prime Standard Edition User Guide: Design Compilation D Send Feedback

64

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

]
1. Intel® Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design
683283 | 2018.09.24 ®

Related Information

e Intel Quartus Prime Software Scripting Support website
Scripting support information, design examples, and training

e Tcl Scripting documentation
e Command-Line Scripting documentation

1.11.1.1. Creating Design Partitions

To create a design partition to a specified hierarchy name, use the following
command:

Example 1. Create Design Partition

create_partition [-h | -help] [-long_help] -contents
<hierarchy name> -partition <partition name>

Table 4. Tcl Script Command: create_partition
Argument Description
-h | -help Short help
-long_help Long help with examples and possible return values
-contents <hierarchy name> Partition contents (hierarchy assigned to Partition)
-partition <partition name> Partition name

1.11.1.2. Enabling or Disabling Design Partition Assignments During Compilation

To direct the Intel Quartus Prime Compiler to enable or disable design partition
assignments during compilation, use the following command:

Example 2. Enable or Disable Partition Assignments During Compilation

set_global_assignment -name IGNORE_PARTITIONS <value>

Table 5. Tcl Script Command: set _gl obal _assi gnnent

Value Description

OFF | The Intel Quartus Prime software recognizes the design partitions assignments set in the current Intel Quartus
Prime project and recompiles the partition in subsequent compilations depending on their netlist status.

ON The Intel Quartus Prime software does not recognize design partitions assignments set in the current Intel Quartus

Prime project and performs a compilation without regard to partition boundaries or netlists.

1.11.1.3. Setting the Netlist Type
To set the partition netlist type, use the following command:
Example 3. Set Partition Netlist Type

set_global_assignment -name PARTITION_NETLIST_TYPE <value>
-section_id <partition name>

Note: The PARTITION_NETLIST_TYPE command accepts the following values: SOURCE,
POST_SYNTH, POST_FIT, and EMPTY.
D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

65

https://www.intel.com/content/www/us/en/programmable/support/support-resources/support-centers/quartus-support.html
https://www.intel.com/content/www/us/en/docs/programmable/683325/current/tcl-scripting.html
https://www.intel.com/content/www/us/en/docs/programmable/683325/current/command-line-scripting.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Intel® Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design
® 683283 | 2018.09.24

1.11.1.4. Setting the Fitter Preservation Level for a Post-fit or Imported Netlist

To set the Fitter Preservation Level for a post-fit or imported netlist, use the following
command:

Example 4. Set Fitter Preservation Level
set_global_assignment -name PARTITION_FITTER_PRESERVATION_LEVEL
<value> -section_id <partition name>

Note: The PARTITION_FITTER_PRESERVATION command accepts the following values:
NETLIST_ONLY, PLACEMENT, and PLACEMENT _AND_ROUTING.

1.11.1.5. Preserving High-Speed Optimization

To preserve high-speed optimization for tiles contained within the selected partition,
use the following command:

Example 5. Preserve High-Speed Optimization

set_global_assignment -name PARTITION_PRESERVE_HIGH_SPEED TILES ON

1.11.1.6. Specifying the Software Should Use the Specified Netlist and Ignore
Source File Changes

To specify that the software should use the specified netlist and ignore source file
changes, even if the source file has changed since the netlist was created, use the
following command:

Example 6. Specify Netlist and Ignore Source File Changes

set_global_assignment -name PARTITION_IGNORE_SOURCE_FILE_CHANGES ON
-section_id "<partition name>"

1.11.1.7. Reducing Opening a Project, Creating Design Partitions, andPerforming
an Initial Compilation

Scenario background: You open a project called AB_project, set up two design
partitions, entities A and B, and then perform an initial full compilation.

Example 7. Set Up and Compile AB_project
set project AB_project

load_package incremental_compilation
load_package flow
project_open $project

Ensure that design partition assignments are not ignored
set_global_assignment -name IGNORE_PARTITIONS \ OFF

Set up the partitions
create_partition -contents A -name "Partition_A"
create_partition -contents B -name "Partition_B"

Set the netlist types to post-fit for subsequent

compilations (all partitions are compiled during the

initial compilation since there are no post-fit netlists)
set_partition -partition "Partition_A" -netlist_type POST_FIT
set_partition -partition "Partition_B" -netlist_type POST _FIT

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

66

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Intel® Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design
683283 | 2018.09.24 ®

Run initial compilation
export_assignments
execute_flow -full_compile

project_close

1.11.1.8. Optimizing the Placement for a Timing-Critical Partition

Scenario background: You have run the initial compilation shown in the example script
below. You would like to apply Fitter optimizations, such as physical synthesis, only to
partition A. No changes have been made to the HDL files. To ensure the previous
compilation result for partition B is preserved, and to ensure that Fitter optimizations
are applied to the post-synthesis netlist of partition A, set the netlist type of B to
Post-Fit (which was already done in the initial compilation, but is repeated here for
safety), and the netlist type of A to Post-Synthesis, as shown in the following
example:

Example 8. Fitter Optimization for AB_project
set project AB_project
load_package flow
load_package incremental_compilation
load_package project
project_open $project

Turn on Physical Synthesis Optimization
set_high_effort_fmax_optimization_assignments

For A, set the netlist type to post-synthesis
set_partition -partition "Partition_A" -netlist_type POST_SYNTH

For B, set the netlist type to post-fit
set_partition -partition "Partition_B" -netlist _type POST_FIT

Also set Top to post-fit
set_partition -partition "Top" -netlist_type POST_FIT

Run incremental compilation
export_assignments
execute_flow -full_compile

project_close

1.11.1.9. Generating Design Partition Scripts
To generate design partition scripts, use the following script:

Example 9. Generate Partition Script

load required package
load_package database_manager

name and open the project
set project <project path/project_name>
project_open $project

generate the design partition scripts
generate_bottom up_scripts <options>

#close project
project_close

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

67

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Intel® Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design
® 683283 | 2018.09.24

1.11.1.10. Exporting a Partition

To open a project and load the: :quartus: :incremental_compilation package
before you use the Tcl commands to export a partition to a .qxp that contains both a
post-synthesis and post-fit netlist, with routing, use the following script:

Example 10. Export .qxp

load required package
load_package incremental_compilation

open project
project _open <project name>

export partition to the .gxp and set preservation level
export_partition -partition <partition name>
-gxp <.gxp File name> -<options>

#close project
project close

1.11.1.11. Importing a Partition into the Top-Level Design
To import a .qxp into a top-level design, use the following script:

Example 11. Import .qxp into Top-Level Design

load required packages
load_package incremental_compilation
load_package project

load_package flow

open project
project_open <project name>

#import partition
import_partition -partition <partition name> -gxp <.gxp File>
<-options>

#close project
project _close

1.11.1.12. Makefiles

For an example of how to use incremental compilation with a makefi le as part of the
team-based incremental compilation design flow, refer to the read_me.txt file

that accompanies the Incr_comp example located in the /qdesigns/
incr_comp_makefile subdirectory.

When using a team-based incremental compilation design flow, the Generate Design
Partition Scripts dialog box can write makefiles that automatically export lower-level
design partitions and import them into the top-level design whenever design files
change.

Intel Quartus Prime Standard Edition User Guide: Design Compilation D Send Feedback

68

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

683283 | 2018.09.24

1. Intel® Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design I n t e I
®

1.12. Document Revision History

Table 6. Document Revision History
Date Version Changes
2016.05.03 16.0.0 Stated limitations about deprecated physical synthesis options.
2015.11.02 15.1.0 Changed instances of Quartus II to Intel Quartus Prime.
2015.05.04 15.0.0 Removed Early Timing Estimate feature support.
2014.12.15 14.1.0 e Updated location of Fitter Settings, Analysis & Synthesis Settings, and
Physical Optimization Settings to Compiler Settings.
e Updated DSE II content.
2014.08.18 14.0a10.0 Added restriction about smart compilation in Arria 10 devices.
June 2014 14.0.0 e Dita conversion.
e Replaced MegaWizard Plug-In Manager content with IP Catalog and
Parameter Editor content.
e Revised functional safety section. Added export and import sections.
November 2013 13.1.0 Removed HardCopy device information. Revised information about Rapid
Recompile. Added information about functional safety. Added information about
flattening sub-partition hierarchies.
November 2012 12.1.0 Added Turning On Supported Cross-boundary Optimizations.
June 2012 12.0.0 Removed survey link.
November 2011 11.0.1 Template update.
May 2011 11.0.0 e Updated “Tcl Scripting and Command-Line Examples”.
December 2010 10.1.0 e Changed to new document template.
e Reorganized Tcl scripting section. Added description for new feature:
Ignore partitions assignments during compilation option.
e Reorganized “Incremental Compilation Summary” section.
July 2010 10.0.0 e Removed the explanation of the “bottom-up design flow” where designers

work completely independently, and replaced with Altera’s
recommendations for team-based environments where partitions are
developed in the same top-level project framework, plus an explanation of
the bottom-up process for including independent partitions from third-party
IP designers.

e Expanded the Merge command explanation to explain how it now
accommodates cross-partition boundary optimizations.

e Restructured Altera recommendations for when to use a floorplan.

e Added “Viewing the Contents of a Intel Quartus Prime Exported Partition
File (.gxp)” section.

e Reorganized chapter to make design flow scenarios more visible; integrated
into various sections rather than at the end of the chapter.

continued...

D Send Feedback

Intel Quartus Prime Standard Edition User Guide: Design Compilation

69

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

683283 | 2018.09.24

I n t e I 1. Intel® Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design
®

Date Version Changes

October 2009 9.1.0 e Redefined the bottom-up design flow as team-based and reorganized
previous design flow examples to include steps on how to pass top-level
design information to lower-level designers.

e Moved SDC Constraints from Lower-Level Partitions section to the Best
Practices for Incremental Compilation Partitions and Floorplan Assignments
chapter in volume 1 of the Intel Quartus Prime Handbook.

e Reorganized the “Conclusion” section.

e Removed HardCopy APEX and HardCopy Stratix Devices section.

March 2009 9.0.0 e Split up netlist types table

e Moved “Team-Based Incremental Compilation Design Flow” into the
“Including or Integrating partitions into the Top-Level Design” section.

e Added new section “Including or Integrating Partitions into the Top-Level
Design”.

e Removed “Exporting a Lower-Level Partition that Uses a JTAG Feature”
restriction

e Other edits throughout chapter

November 2008 8.1.0 e Added new section “Importing SDC Constraints from Lower-Level Partitions”
on page 2-44
e Removed the Incremental Synthesis Only option

e Removed section “OpenCore Plus Feature for MegaCore Functions in
Bottom-Up Flows”

e Removed section “Compilation Time with Physical Synthesis Optimizations”

e Added information about using a .qxp as a source design file without
importing

e Reorganized several sections

e Updated Figure 2-10

Related Information

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

70

https://www.altera.com/search-archives
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

683283 | 2018.09.24 I t I
D Send Feedback I l e R

2. Best Practices for Incremental Compilation Partitions
and Floorplan Assighments

2.1. About Incremental Compilation and Floorplan Assignments

This manual provides guidelines to help you partition your design to take advantage of
Intel Quartus Prime incremental compilation, and to help you create a design floorplan
using Logic Lock (Standard) regions when they are recommended to support the
compilation flow.

The Intel Quartus Prime incremental compilation feature allows you to partition a
design, compile partitions separately, and reuse results for unchanged partitions.
Incremental compilation provides the following benefits:

e Reduces compilation times by an average of 75% for large design changes
e Preserves performance for unchanged design blocks
e Provides repeatable results and reduces the number of compilations

e Enables team-based design flows

Related Information

Intel Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design
documentation on page 7

2.2. Incremental Compilation Overview

Intel Quartus Prime incremental compilation is an optional compilation flow that
enhances the default Intel Quartus Prime compilation. If you do not partition your
design for incremental compilation, your design is compiled using the default “flat”
compilation flow.

To prepare your design for incremental compilation, you first determine which logical
hierarchy boundaries should be defined as separate partitions in your design, and
ensure your design hierarchy and source code is set up to support this partitioning.
You can then create design partition assignments in the Intel Quartus Prime software
to specify which hierarchy blocks are compiled independently as partitions (including
empty partitions for missing or incomplete logic blocks).

During compilation, Intel Quartus Prime Analysis & Synthesis and the Fitter create
separate netlists for each partition. Netlists are internal post-synthesis and post-fit
database representations of your design.

In subsequent compilations, you can select which netlist to preserve for each partition.
You can either reuse the synthesis or fitting netlist, or instruct the Intel Quartus Prime
software to resynthesize the source files. You can also use compilation results
exported from another Intel Quartus Prime project.

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.

*QOther names and brands may be claimed as the property of others.

Iso
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments
® 683283 | 2018.09.24

When you make changes to your design, the Intel Quartus Prime software recompiles
only the designated partitions and merges the new compilation results with existing
netlists for other partitions, according to the degree of results preservation you set
with the netlist for each design partition.

In some cases, Altera recommends that you create a design floorplan with placement
assignments to constrain parts of the design to specific regions of the device.

You must use the partial reconfiguration (PR) feature in conjunction with incremental
compilation for Stratix® V device families. Partial reconfiguration allows you to
reconfigure a portion of the FPGA dynamically, while the remainder of the device
continues to operate as intended.

Related Information
Introduction to Design Floorplans on page 106

2.2.1. Recommendations for the Netlist Type

For subsequent compilations, you specify which post-compilation netlist you want to
use with the netlist type for each partition.

Use the following general guidelines to set the netlist type for each partition:

e Source File—Use this setting to resynthesize the source code (with any new
assignments, and replace any previous synthesis or Fitter results).

— If you modify the design source, the software automatically resynthesizes the
partitions with the appropriate netlist type, which makes the Source File
setting optional in this case.

— Most assignments do not trigger an automatic recompilation, so you must set
the netlist type to Source File to compile the source files with new
assignments or constraints that affect synthesis.

e Post-Synthesis (default)—Use this setting to re-fit the design (with any new
Fitter assignments), but preserve the synthesis results when the source files have
not changed. If it is difficult to meet the required timing performance, you can use
this setting to allow the Fitter the most flexibility in placement and routing. This
setting does not reduce compilation time as much as the Post-Fit setting or
preserve timing performance from the previous compilation.

e Post-Fit—Use this setting to preserve Fitter and performance results when the
source files have not changed. This setting reduces compilation time the most,
and preserves timing performance from the previous compilation.

¢ Post-Fit with Fitter Preservation Level set to Placement—Use the Advanced
Fitter Preservation Level setting on the Advanced tab in the Design Partition
Properties dialog box to allow more flexibility and find the best routing for all
partitions given their placement.

The Intel Quartus Prime software Rapid Recompile feature instructs the Compiler to
reuse the compatible compilation results if most of the design has not changed since
the last compilation. This feature reduces compilation time and preserves performance
when there are small and isolated design changes within a partition, and works with
all netlist type settings. With this feature, you do not have control over which parts of
the design are recompiled; the Compiler determines which parts of the design must be
recompiled.

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

72

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments
683283 | 2018.09.24 ®

2.3. Design Flows Using Incremental Compilation

The Intel Quartus Prime incremental compilation feature supports various design
flows. Your design flow affects design optimization and the amount of design planning
required to obtain optimal results.

2.3.1. Using Standard Flow

In the standard incremental compilation flow, the top-level design is divided into
partitions, which can be compiled and optimized together in one Intel Quartus Prime
project. If another team member or IP provider is developing source code for the top-
level design, they can functionally verify their partition independently, and then simply
provide the partition’s source code to the project lead for integration into the top-level
design. If the project lead wants to compile the top-level design when source code is
not yet complete for a partition, they can create an empty placeholder for the partition
until the code is ready to be added to the top-level design.

Compiling all design partitions in a single Intel Quartus Prime project ensures that all
design logic is compiled with a consistent set of assignments, and allows the software
to perform global placement and routing optimizations. Compiling all design logic
together is beneficial for FPGA design flows because all parts of the design must use
the same shared set of device resources. Therefore, it is often easier to ensure good
quality of results when partitions are developed within a single top-level Intel Quartus
Prime project.

2.3.2. Using Team-Based Flow

In the team-based incremental compilation flow, you can design and optimize
partitions by accessing the top-level project from a shared source control system or
creating copies of the top-level Intel Quartus Prime project framework. As
development continues, designers export their partition so that the post-synthesis
netlist or post-fitting results can be integrated into the top-level design.

2.3.2.1. Using Third-Party IP Delivery Flow

If required for third-party IP delivery, or in cases where designers cannot access a
shared or copied top-level project framework, you can create and compile a design
partition logic in isolation and export a partition that is included in the top-level
project. If this type of design flow is necessary, planning and rigorous design
guidelines might be required to ensure that designers have a consistent view of
project assignments and resource allocations. Therefore, developing partitions in
completely separate Intel Quartus Prime projects can be more challenging than having
all source code within one project or developing design partitions within the same top-
level project framework.

2.3.3. Combining Design Flows

You can also combine design flows and use exported partitions only when it is
necessary to support your design environment. For example, if the top-level design
includes one or more design blocks that will be optimized by remote designers or IP
providers, you can integrate those blocks into the reserved partitions in the top-level
design when the code is complete, but also have other partitions that will be
developed within the top-level design.

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

73

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments
® 683283 | 2018.09.24

If any partitions are developed independently, the project lead must ensure that top-
level constraints (such as timing constraints, any relevant floorplan or pin
assignments, and optimization settings) are consistent with those used by all
designers.

2.3.4. Project Management in Team-Based Design Flows

If possible, each team member should work within the same top-level project
framework. Using the same project framework amongst team members ensures that
designers have the settings and constraints needed for their partition and allows
designers to analyze how their design block interacts with other partitions in the top-
level design.

2.3.4.1. Using a Source Control System

In a team-based environment where designers have access to the project through
source control software, each designer can use project files as read-only and develop
their partition within the source control system. As designers check in their completed
partitions, other team members can see how their partitions interact.

2.3.4.2. Using a Copy of the Top-Level Project

If designers do not have access to a source control system, the project lead can
provide each designer with a copy of the top-level project framework to use as they
develop their partitions. In both cases, each designer exports their completed design
as a partition, and then the project lead integrates the partition into the top-level
design. The project lead can choose to use only the post-synthesis netlist and rerun
placement and routing, or to use the post-fitting results to preserve the placement
and routing results from the other designer's projects. Using post-synthesis partitions
gives the Fitter the most flexibility and is likely to achieve a good result for all
partitions, but if one partition has difficultly meeting timing, the designer can choose
to preserve their successful fitting results.

2.3.4.3. Using a Separate Project

Alternatively, designers can use their own Intel Quartus Prime project for their
independent design block. You might use this design flow if a designer, such as a
third-party IP provider, does not have access to the entire top-level project
framework. In this case, each designer must create their own project with all the
relevant assignments and constraints. This type of design flow requires more planning
and rigorous design guidelines. If the project lead plans to incorporate the post-fitting
compilation results for the partition, this design flow requires especially careful
planning to avoid resource conflicts.

2.3.4.4. Using Scripts

The project lead also has the option to generate design partition scripts to manage
resource and timing budgets in the top-level design when partitions are developed
outside the top-level project framework. Scripts make it easier for designers of
independent Intel Quartus Prime projects to follow instructions from the project lead.
The Intel Quartus Prime design partition scripts feature creates Tcl scripts or . tcl
files and makefiles that an independent designer can run to set up an independent
Intel Quartus Prime project.

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

74

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments
683283 | 2018.09.24 ®

2.3.4.5. Using Constraints

If designers create Intel Quartus Prime assignments or timing constraints for their
partitions, they must ensure that the constraints are integrated into the top-level
design. If partition designers use the same top-level project framework (and design
hierarchy), the constraints or Synopsys Design Constraints File (.sdc) can be easily
copied or included in the top-level design. If partition designers use a separate Intel
Quartus Prime project with a different design hierarchy, they must ensure that
constraints are applied to the appropriate level of hierarchy in the top-level design,
and design the .sdc for easy delivery to the project lead.

Related Information

e Including SDC Constraints from Lower-Level Partitions for
Third-Party IP Delivery on page 102

e Intel Quartus Prime Incremental Compilation for Hierarchical and Team-Based
Design documentation on page 7
Information about the different types of incremental design flows and example
applications, as well as documented restrictions and limitations

2.4. Why Plan Partitions and Floorplan Assignments?

Incremental design flows typically require more planning than flat compilations, and
require you to be more rigorous about following good design practices. For example,
you might need to structure your source code or design hierarchy to ensure that logic
is grouped correctly for optimization. It is easier to implement the correct logic
grouping early in the design cycle than to restructure the code later.

Planning involves setting up the design logic for partitioning and may also involve
planning placement assignments to create a floorplan. Not all design flows require
floorplan assignments. If you decide to add floorplan assignments later, when the
design is close to completion, well-planned partitions make floorplan creation easier.
Poor partition or floorplan assignments can worsen design area utilization and
performance and make timing closure more difficult.

As FPGA devices get larger and more complex, following good design practices
become more important for all design flows. Adhering to recommended synchronous
design practices makes designs more robust and easier to debug. Using an
incremental compilation flow adds additional steps and requirements to your project,
but can provide significant benefits in design productivity by preserving the
performance of critical blocks and reducing compilation time.

Related Information
Introduction to Design Floorplans on page 106

2.4.1. Partition Boundaries and Optimization

The logical hierarchical boundaries between partitions are treated as hard boundaries
for logic optimization (except for some limited cross-boundary optimizations) to allow
the software to size and place each partition independently. The figure shows the
effects of partition boundaries during logic optimization.

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

75

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments
® 683283 | 2018.09.24

Figure 8. Effects of Partition Boundaries During Logic Optimization

Cannot obtain results of an
individual hierarchy for
incremental compilation

Compile Hierarchy A Hierarchy B
without
partition

boundaries _/
Hierarchy A Hierarchy B H|erath|es re{ma|n}|n(}1epfendent
during logic optimizations

Compile (with limited cross-boundary optimizations)
with

partition Possible to incrementally
boundaries recompile each hierarchy

Hierarchy A

Hierarchy B

2.4.1.1. Merging Partitions

You can use the Merge command in the Design Partitions window to combine
hierarchical partitions into a single partition, as long as they share the same
immediate parent partition. Merging partitions allows additional optimizations for
partition I/O ports that connect between or feed more than one of the merged
hierarchical design blocks.

When partitions are placed together, the Fitter can perform placement optimizations
on the design as a whole to optimize the placement of cross-boundary paths.
However, the Fitter can never perform logic optimizations such as physical synthesis
across the partition boundary. If partitions are fit separately in different projects, or if
some partitions use previous post-fitting results, the Fitter does not place and route
the entire cross-boundary path at the same time and cannot fully optimize placement
across the partition boundaries. Good design partitions can be placed independently
because cross-partition paths are not the critical timing paths in the design.

2.4.1.2. Resource Utilization

There are possible timing performance utilization effects due to partitioning and
creating a floorplan. Not all designs encounter these issues, but you should consider
these effects if a flat version of your design is very close to meeting its timing
requirements, or is close to using all the device resources, before adding partition or
floorplan assignments:

Intel Quartus Prime Standard Edition User Guide: Design Compilation D Send Feedback

76

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments
683283 | 2018.09.24 ®

e Partitions can increase resource utilization due to cross-boundary optimization
limitations if the design does not follow partitioning guidelines. Floorplan
assignments can also increase resource utilization because regions can lead to
unused logic. If your device is full with the flat version of your design, you can
focus on creating partitions and floorplan assignments for timing-critical or
often-changing blocks to benefit most from incremental compilation.

e Partitions and floorplan assignments might increase routing utilization compared
to a flat design. If long compilation times are due to routing congestion, you might
not be able to use the incremental flow to reduce compilation time. Review the
Fitter messages to check how much time is spent during routing optimizations to
determine the percentage of routing utilization. When routing is difficult, you can
use incremental compilation to lock the routing for routing-critical blocks only
(with other partitions empty), and then compile the rest of the design after the
critical blocks meets their requirements.

e Partitions can reduce timing performance in some cases because of the
optimization and resource effects described above, causing longer logic delays.
Floorplan assignments restrict logic placement, which can make it more difficult
for the Fitter to meet timing requirements. Use the guidelines in this manual to
reduce any effect on your design performance.

Related Information
e Design Partition Guidelines on page 80

e Checking Floorplan Quality on page 114

2.4.1.3. Turning On Supported Cross-Boundary Optimizations

You can improve the optimizations performed between design partitions by turning on
the cross-boundary optimizations feature. You can select the optimizations as
individual assignments for each partition. This allows the cross-boundary optimization
feature to give you more control over the optimizations that work best for your design.

You can turn on the cross-boundary optimizations for your design partitions on the
Advanced tab of the Design Partition Properties dialog box. Once you change the
optimization settings, the Intel Quartus Prime software recompiles your partition from
source automatically. Cross-boundary optimizations include the following: propagate
constants, propagate inversions on partition inputs, merge inputs fed by a common
source, merge electrically equivalent bidirectional pins, absorb internal paths, and
remove logic connected to dangling outputs.

Cross-boundary optimizations are implemented top-down from the parent partition
into the child partition, but not vice-versa. The cross-boundary optimization feature
cannot be used with partitions with multiple personas (partial reconfiguration
partitions).

Although more partitions allow for a greater reduction in compilation time, consider
limiting the number of partitions to prevent degradation in the quality of results.
Creating good design partitions and good floorplan location assignments helps to
improve the design resource utilization and timing performance results for cross-
partition paths.

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

77

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments
® 683283 | 2018.09.24

2.5. Guidelines for Incremental Compilation

2.5.1. General Partitioning Guidelines

The first step in planning your design partitions is to organize your source code so that
it supports good partition assignments. Although you can assign any hierarchical block
of your design as a design partition or merge hierarchical blocks into the same
partition, following the design guidelines presented below ensures better results.

2.5.1.1. Plan Design Hierarchy and Design Files

You begin the partitioning process by planning the design hierarchy. When you assign
a hierarchical instance as a design partition, the partition includes the assigned
instance and entities instantiated below that are not defined as separate partitions.
You can use the Merge command in the Design Partitions window to combine
hierarchical partitions into a single partition, as long as they have the same immediate
parent partition.

e When planning your design hierarchy, keep logic in the “leaves” of the hierarchy
instead of having logic at the top-level of the design so that you can isolate
partitions if required.

e Create entities that can form partitions of approximately equal size. For example,
do not instantiate small entities at the same hierarchy level, because it is more
difficult to group them to form reasonably-sized partitions.

e Create each entity in an independent file. The Intel Quartus Prime software uses a
file checksum to detect changes, and automatically recompiles a partition if its
source file changes and its netlist type is set to either post-synthesis or post-fit. If
the design entities for two partitions are defined in the same file, changes to the
logic in one partition initiates recompilation for both partitions.

e Design dependencies also affect which partitions are compiled when a source file
changes. If two partitions rely on the same lower-level entity definition, changes
in that lower-level entity affect both partitions. Commands such as VHDL use and
Verilog HDL include create dependencies between files, so that changes to one
file can trigger recompilations in all dependent files. Avoid these types of file
dependencies if possible. The Partition Dependent Files report for each partition in
the Analysis & Synthesis section of the Compilation report lists which files
contribute to each partition.

2.5.1.2. Using Partitions with Third-Party Synthesis Tools

Incremental compilation works well with third-party synthesis tools in addition to Intel
Quartus Prime Integrated Synthesis. If you use a third-party synthesis tool, set up
your tool to create a separate Verilog Quartus Mapping File (.vgm) or EDIF Input File
(.edT) netlist for each hierarchical partition. In the Intel Quartus Prime software,
designate the top-level entity from each netlist as a design partition. The _vgm

or .edf netlist file is treated as the source file for the partition in the Intel Quartus
Prime software.

Related Information

Intel Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design
documentation on page 7

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

78

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments
683283 | 2018.09.24 ®

2.5.1.3. Partition Design by Functionality and Block Size

Initially, you should partition your design along functional boundaries. In a top-level

system block diagram, each block is often a natural design partition. Typically, each

block of a system is relatively independent and has more signal interaction internally
than interaction between blocks, which helps reduce optimizations between partition
boundaries. Keeping functional blocks together means that synthesis and fitting can

optimize related logic as a whole, which can lead to improved optimization.

e Consider how many partitions you want to maintain in your design to determine
the size of each partition. Your compilation time reduction goal is also a factor,
because compiling small partitions is typically faster than compiling large
partitions.

e There is no minimum size for partitions; however, having too many partitions can
reduce the quality of results by limiting optimization. Ensure that the design
partitions are not too small. As a general guideline, each partition should contain
more than approximately 2,000 logic elements (LEs) or adaptive logic modules
(ALMs). If your design is incomplete when you partition the design, use previous
designs to help estimate the size of each block.

2.5.1.4. Partition Design by Clock Domain and Timing Criticality

Consider which clock in your design feeds the logic in each partition. If possible, keep
clock domains within one partition. When a clock signal is isolated to one partition, it
reduces dependence on other partitions for timing optimization. Isolating a clock
domain to one partition also allows better use of regional clock routing networks if the
partition logic is constrained to one region of the design. Additionally, limiting the
number of clocks within each partition simplifies the timing requirements for each
partition during optimization. Use an appropriate subsystem to implement the
required logic for any clock domain transfers (such as a synchronization circuit, dual-
port RAM, or FIFO). You can include this logic inside the partition at one side of the
transfer.

Try to isolate timing-critical logic from logic that you expect to easily meet timing
requirements. Doing so allows you to preserve the satisfactory results for non-critical
partitions and focus optimization iterations on only the timing-critical portions of the
design to minimize compilation time.

Related Information

Analyzing and Optimizing the Design Floorplan
Information about clock domains and their affect on partition design

2.5.1.5. Consider What Is Changing

When assigning partitions, you should consider what is changing in the design. Is
there intellectual property (IP) or reused logic for which the source code will not
change during future design iterations? If so, define the logic in its own partition so
that you can compile one time and immediately preserve the results and not have to
compile that part of the design again. Is logic being tuned or optimized, or are
specifications changing for part of the design? If so, define changing logic in its own
partition so that you can recompile only the changing part while the rest of the design
remains unchanged.

As a general rule, create partitions to isolate logic that will change from logic that will
not change. Partitioning a design in this way maximizes the preservation of unchanged
logic and minimizes compilation time.

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

79

https://www.intel.com/content/www/us/en/docs/programmable/683230/current/analyzing-and-optimizing-the-design-03170.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

I n t e I 2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments
®

683283 | 2018.09.24

2.5.2. Design Partition Guidelines

Follow the design partition guidelines below when you create or modify the HDL code
for each design block that you might want to assign as a design partition. You do not
need to follow all the recommendations exactly to achieve a good quality of results
with the incremental compilation flow, but adhering to as many as possible maximizes
your chances for success.

The design partition guidelines include examples of the types of optimizations that are
prevented by partition boundaries, and describes how you can structure or modify
your partitions to avoid these limitations.

2.5.2.1. Register Partition Inputs and Outputs

Figure 9.

Use registers at partition input and output connections that are potentially timing-
critical. Registers minimize the delays on inter-partition paths and prevent the need
for cross-boundary optimizations.

If every partition boundary has a register as shown in the figure, every register-to-
register timing path between partitions includes only routing delay. Therefore, the
timing paths between partitions are likely not timing-critical, and the Fitter can
generally place each partition independently from other partitions. This advantage
makes it easier to create floorplan location assignments for each separate partition,
and is especially important for flows in which partitions are placed independently in
separate Intel Quartus Prime projects. Additionally, the partition boundary does not
affect combinational logic optimization because each register-to-register logic path is
contained within a single partition.

Registering Partition I/0

Partition A Partition B

—D Q D Q D Q D Q—
Cross-boundary partition
routing delay is not the

critical timing path

If a design cannot include both input and output registers for each partition due to
latency or resource utilization concerns, choose to register one end of each
connection. If you register every partition output, for example, the combinational logic
that occurs in each cross-partition path is included in one partition so that it can be
optimized together.

It is a good synchronous design practice to include registers for every output of a
design block. Registered outputs ensure that the input timing performance for each
design block is controlled exclusively within the destination logic block.

Related Information

e Partition Statistics Report on page 101

e Incremental Compilation Advisor on page 98

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

80

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments
683283 | 2018.09.24 ®

2.5.2.2. Minimize Cross-Partition-Boundary I/0

Minimize the number of I/O paths that cross between partition boundaries to keep
logic paths within a single partition for optimization. Doing so makes partitions more
independent for both logic and placement optimization.

This guideline is most important for timing-critical and high-speed connections
between partitions, especially in cases where the input and output of each partition is
not registered. Slow connections that are not timing-critical are acceptable because
they should not impact the overall timing performance of the design. If there are
timing-critical paths between partitions, rework or merge the partitions to avoid these
inter-partition paths.

When dividing your design into partitions, consider the types of functions at the
partition boundaries. The figure shows an expansive function with more outputs than
inputs in the left diagram, which makes a poor partition boundary, and, on the right
side, a better place to assign the partition boundary that minimizes

cross-partition I/0s. Adding registers to one or both sides of the cross-partition path
in this example would further improve partition quality.

Figure 10. Minimizing I/0 Between Partitions by Moving the Partition Boundary

Al |B AllB
.Expansivg f”"“i"": Better part of design to assign
Not ideal partition boundary a partition output boundary

Another way to minimize connections between partitions is to avoid using
combinational “glue logic” between partitions. You can often move the logic to the
partition at one end of the connection to keep more logic paths within one partition.
For example, the bottom diagram includes a new level of hierarchy C defined as a
partition instead of block B. Clearly, there are fewer I/O connections between
partitions A and C than between partitions A and B.

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

81

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

|
2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments
® 683283 | 2018.09.24

Figure 11. Minimizing I/0 between Partitions by Modifying Glue Logic
Many cross-boundary partition paths: Poor design partition assignment
Top

WO

/V

Fewer cross-boundary partition paths: Better design partition assignment

Top

Related Information
e Partition Statistics Report on page 101
e Incremental Compilation Advisor on page 98

2.5.2.3. Examine the Need for Logic Optimization Across Partitions

Partition boundaries prevent logic optimizations across partitions (except for some
limited cross-boundary optimizations).

In some cases, especially if part of the design is complete or comes from another
designer, the designer might not have followed these guidelines when the source code
was created. These guidelines are not mandatory to implement an incremental
compilation flow, but can improve the quality of results. If assigning a partition affects
resource utilization or timing performance of a design block as compared to the flat
design, it might be due to one of the issues described in the logic optimization across
partitions guidelines below. Many of the examples suggest simple changes to your
partition definitions or hierarchy to move the partition boundary to improve your
results.

The following guidelines ensure that your design does not require logic optimization
across partition boundaries:

2.5.2.3.1. Keep Logic in the Same Partition for Optimization and Merging

If your design logic requires logic optimization or merging to obtain optimal results,
ensure that all the logic is part of the same partition because only limited cross-
boundary optimizations are permitted.

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

82

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments
683283 | 2018.09.24 ®

Example—Combinational Logic Path

If a combinational logic path is split across two partitions, the logic cannot be
optimized or merged into one logic cell in the device. This effect can result in an extra
logic cell in the path, increasing the logic delay. As a very simple example, consider
two inverters on the same signal in two different partitions, A and B, as shown in the
left diagram of the figure. To maintain correct incremental functionality, these two
inverters cannot be removed from the design during optimization because they occur
in different design partitions. The Intel Quartus Prime software cannot use information
about other partitions when it compiles each partition, because each partition is
allowed to change independently from the other.

On the right side of the figure, partitions A and B are merged to group the logic in
blocks A and B into one partition. If the two blocks A and B are not under the same
immediate parent partition, you can create a wrapper file to define a new level of
hierarchy that contains both blocks, and set this new hierarchy block as the partition.
With the logic contained in one partition, the software can optimize the logic and
remove the two inverters (shown in gray), which reduces the delay for that logic path.
Removing two inverters is not a significant reduction in resource utilization because
inversion logic is readily available in Altera device architecture. However, this example
is a simple demonstration of the types of logic optimization that are prevented by
partition boundaries.

Figure 12. Keeping Logic in the Same Partition for Optimization

,,,,,,,,,,,,,,,,, Merged Parition
A 8 A B
Inverters in separate partitions A and B Inverters in merged partition can be removed:
cannot be removed from design: Better design partition assignment

Poor design partition assignment

Example—Fitter Merging

In a flat design, the Fitter can also merge logical instantiations into the same physical
device resource. With incremental compilation, logic defined in different partitions
cannot be merged to use the same physical device resource.

For example, the Fitter can merge two single-port RAMs from a design into one
dedicated RAM block in the device. If the two RAMs are defined in different partitions,
the Fitter cannot merge them into one dedicated device RAM block.

This limitation is a only a concern if merging is required to fit the design in the target
device. Therefore, you are more likely to encounter this issue during troubleshooting
rather than during planning, if your design uses more logic than is available in the
device.

2.5.2.3.2. Merging PLLs and Transceivers (GXB)

Multiple instances of the ALTPLL IP core can use the same PLL resource on the device.
Similarly, GXB transceiver instances can share high-speed serial interface (HSSI)
resources in the same quad as other instances. The Fitter can merge multiple

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

83

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments
® 683283 | 2018.09.24

instantiations of these blocks into the same device resource, even if it requires
optimization across partitions. Therefore, there are no restrictions for PLLs and
high-speed transceiver blocks when setting up partitions.

2.5.2.4. Keep Constants in the Same Partition as Logic

Because the Intel Quartus Prime software cannot fully optimize across a partition
boundary, constants are not propagated across partition boundaries, except from
parent partition to child partition. A signal that is constant (1/Vcc or 0/GND) in one
partition cannot affect another partition.

2.5.2.4.1. Example—Constants in Merged Partitions

For example, the left diagram of the figure shows part of a design in which partition A
defines some signals as constants (and assumes that the other input connections
come from elsewhere in the design and are not shown in the figure). Constants such
as these could appear due to parameter or generic settings or configurations with
parameters, setting a bus to a specific set of values, or could result from optimizations
that occur within a group of logic. Because the blocks are independent, the software
cannot optimize the logic in block B based on the information from block A. The right
side of the figure shows a merged partition that groups the logic in blocks A and B. If
the two blocks A and B are not under the same immediate parent partition, you can
create a wrapper file to define a new level of hierarchy that contains both blocks, and
set this new hierarchical block as the partition.

Within the single merged partition, the Intel Quartus Prime software can use the
constants to optimize and remove much of the logic in block B (shown in gray), as
shown in the figure.

Figure 13. Keeping Constants in the Same Partition as the Logic They Feed

V(C V(e
T : T 3
i]
S | - :
5 =
[x =]
iy
: %
T = L §
GND 3 GND I —D ‘
A B A B
Connections to constants in another partition: Constants in merged partition are used to optimize:
Poor design partition assignment Better design partition assignment

Related Information
e Partition Statistics Report on page 101
e Incremental Compilation Advisor on page 98

2.5.2.5. Avoid Signals That Drive Multiple Partition I/0 or Connect I/0 Together

Do not use the same signal to drive multiple ports of a single partition or directly
connect two ports of a partition. If the same signal drives multiple ports of a partition,
or if two ports of a partition are directly connected, those ports are logically

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

84

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments
683283 | 2018.09.24 ®

equivalent. However, the software has limited information about connections made in
another partition (including the top-level partition), the compilation cannot take
advantage of the equivalence. This restriction usually produces sub-optimal results.

If your design has these types of connections, redefine the partition boundaries to
remove the affected ports. If one signal from a higher-level partition feeds two input
ports of the same partition, feed the one signal into the partition, and then make the
two connections within the partition. If an output port drives an input port of the same
partition, the connection can be made internally without going through any I/O ports.
If an input port drives an output port directly, the connection can likely be
implemented without the ports in the lower-level partition by connecting the signals in
a higher-level partition.

2.5.2.5.1. Example—Single Signal Driving More Than One Port

Figure 14.

The figure shows an example of one signal driving more than one port. The left
diagram shows a design where a single clock signal is used to drive both the read and
write clocks of a RAM block. Because the RAM block is compiled as a separate partition
A, the RAM block is implemented as though there are two unique clocks. If you know
that the port connectivity will not change (that is, the ports will always be driven by
the same signal in the top-level partition), redefine the port interface so that there is
only a single port that can drive both connections inside the partition. You can create a
wrapper file to define a partition that has fewer ports, as shown in the diagram on the
right side. With the single clock fed into the partition, the RAM can be optimized into a
single-clock RAM instead of a dual-clock RAM. Single-clock RAM can provide better
performance in the device architecture. Additionally, partition A might use two global
routing lines for the two copies of the clock signal. Partition B can use one global line
that fans out to all destinations. Using just the single port connection prevents
overuse of global routing resources.

Preventing One Signal from Driving Multiple Partition Inputs

Top Top
_ak | Dual ¢ | Single-
Clock [Jwr_ak | dock Clock wr k| clock
. > RAM : — " RAM
A B
Two clocks cannot be With Partition B, RAM can
treated as the same signal: be optimized for one clock:
Poor design partition assignment Better design partition assignment

Related Information

Incremental Compilation Advisor on page 98

2.5.2.6. Invert Clocks in Destination Partitions

For best results, clock inversion should be performed in the destination logic array
block (LAB) because each LAB contains clock inversion circuitry in the device
architecture. In a flat compilation, the Intel Quartus Prime software can optimize a

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

85

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments
® 683283 | 2018.09.24

clock inversion to propagate it to the destination LABs regardless of where the
inversion takes place in the design hierarchy. However, clock inversion cannot
propagate through a partition boundary (except from a parent partition to a child
partition) to take advantage of the inversion architecture in the destination LABs.

2.5.2.6.1. Example—Clock Signal Inversion

With partition boundaries as shown in the left diagram of the figure, the Intel Quartus
Prime software uses logic to invert the signal in the partition that defines the inversion
(the top-level partition in this example), and then routes the signal on a global clock
resource to its destinations (in partitions A and B). The inverted clock acts as a gated
clock with high skew. A better solution is to invert the clock signal in the destination
partitions as shown on the right side of the diagram. In this case, the correct logic and
routing resources can be used, and the signal does not behave like a gated clock.

The figure shows the clock signal inversion in the destination partitions.

Figure 15. Inverting Clock Signal in Destination Partitions

Top Top

—{ >0
B Clock [>o- B
Clock': o)

Inverter acts as clock gating (adding skew): Clock inverted inside destination LABs,
Poor design partition assignment only one global routing signal:
Better design partition assignment

Notice that this diagram also shows another example of a single pin feeding two ports
of a partition boundary. In the left diagram, partition B does not have the information
that the clock and inverted clock come from the same source. In the right diagram,
partition B has more information to help optimize the design because the clock is
connected as one port of the partition.

2.5.2.7. Connect I/0 Pin Directly to I/0 Register for Packing Across Partition
Boundaries

The Intel Quartus Prime software allows cross-partition register packing of I/0O
registers in certain cases where your input and output pins are defined in the top-level
hierarchy (and the top-level partition), but the corresponding I/0 registers are defined
in other partitions.

Input pin cross-partition register packing requires the following specific circumstances:

e The input pin feeds exactly one register.

e The path between the input pin and register includes only input ports of partitions
that have one fan-out each.

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

86

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments
683283 | 2018.09.24 ®

Output pin cross-partition register packing requires the following specific
circumstances:

e The register feeds exactly one output pin.

e The output pin is fed by only one signal.

e The path between the register and output pin includes only output ports of
partitions that have one fan-out each.

The following examples of I/0 register packing illustrate this point using Block Design
File (.bdf) schematics to describe the design logic.

2.5.2.7.1. Example 1—Output Register in Partition Feeding Multiple Output Pins

Figure 16.

Figure 17.

In this example, the subdesign contains a single register.

Subdesign with One Register, Designated as a Separate Partition

o [.:_I;. LTl

If the top-level design instantiates the subdesign with a single fan-out directly feeding
an output pin, and designates the subdesign as a separate design partition, the Intel
Quartus Prime software can perform cross-partition register packing because the
single partition port feeds the output pin directly.

In this example, the top-level design instantiates the subdesign as an output register
with more than one fan-out signal.

Top-Level Design Instantiating the Subdesign with Two Output Pins

d
clk

F=l

In this case, the Intel Quartus Prime software does not perform output register
packing. If there is a Fast Output Register assignment on pin out, the software
issues a warning that the Fitter cannot pack the node to an I/O pin because the node
and the I/0 cell are connected across a design partition boundary.

This type of cross-partition register packing is not allowed because it requires
modification to the interface of the subdesign partition. To perform incremental
compilation, the Intel Quartus Prime software must preserve the interface of design
partitions.

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

87

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments
® 683283 | 2018.09.24

To allow the Intel Quartus Prime software to pack the register in the subdesign with
the output pin out in the figure, restructure your HDL code so that output registers
directly connect to output pins by making one of the following changes:

e Place the register in the same partition as the output pin. The simplest method is
to move the register from the subdesign partition into the partition containing the
output pin. Doing so guarantees that the Fitter can optimize the two nodes without
violating partition boundaries.

e Duplicate the register in your subdesign HDL so that each register feeds only one
pin, and then connect the extra output pin to the new port in the top-level design.
Doing so converts the cross-partition register packing into the simplest case where
each register has a single fan-out.

Figure 18. Modified Subdesign with Two Output Registers and Two Output Ports

Figure 19. Modified Top-Level Design Connecting Two Output Ports to Output Pins

d q

clk extra

2.5.2.7.2. Example 2—Input Register in Partition Fed by an Inverted Input Pin or Output
Register in Partition Feeding an Inverted Output Pin

In this example, a subdesign designated as a separate partition contains a register.
The top-level design in the figure instantiates the subdesign as an input register with
the input pin inverted. The top-level design instantiates the subdesign as an output
register with the signal inverted before feeding an output pin.

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

88

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments
683283 | 2018.09.24 ®

Figure 20.

Figure 21.

2.5.2.8. Do

Top-Level Design Instantiating Subdesign as an Input Register with an
Inverted Input Pin

Top-Level Design Instantiating the Subdesign as an Output Register Feeding
an Inverted Output Pin

d
clk

In these cases, the Intel Quartus Prime software does not perform register packing. If
there is a Fast Input Register assignment on pin in, as shown in the top figure, or
a Fast Output Register assignment on pin out, as shown in the bottom figure, the
Intel Quartus Prime software issues a warning that the Fitter cannot pack the node to
an I/0 pin because the node and I/O cell are connected across a design partition
boundary.

This type of register packing is not allowed because it requires moving logic across a
design partition boundary to place into a single I/O device atom. To perform register
packing, either the register must be moved out of the subdesign partition, or the
inverter must be moved into the subdesign partition to be implemented in the register.

To allow the Intel Quartus Prime software to pack the single register in the subdesign
with the input pin in, as shown in top figure or the output pin out, as shown in the
bottom figure, restructure your HDL code to place the register in the same partition as
the inverter by making one of the following changes:

e Move the register from the subdesign partition into the top-level partition
containing the pin. Doing so ensures that the Fitter can optimize the I/O register
and inverter without violating partition boundaries.

e Move the inverter from the top-level block into the subdesign, and then connect
the subdesign directly to a pin in the top-level design. Doing so allows the Fitter to
optimize the inverter into the register implementation, so that the register is
directly connected to a pin, which enables register packing.

Not Use Internal Tri-States

Internal tri-state signals are not recommended for FPGAs because the device
architecture does not include internal tri-state logic. If designs use internal tri-states
in a flat design, the tri-state logic is usually converted to OR gates or multiplexing
logic. If tri-state logic occurs on a hierarchical partition boundary, the Intel Quartus
Prime software cannot convert the logic to combinational gates because the partition
could be connected to a top-level device I/O through another partition.

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

89

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

I n t e I 2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments
®

Figure 22,

Figure 23.

683283 | 2018.09.24

The figures below show a design with partitions that are not supported for incremental
compilation due to the internal tri-state output logic on the partition boundaries.
Instead of using internal tri-state logic for partition outputs, implement the correct
logic to select between the two signals. Doing so is good practice even when there are
no partitions, because such logic explicitly defines the behavior for the internal signals
instead of relying on the Intel Quartus Prime software to convert the tri-state signals
into logic.

Unsupported Internal Tri-State Signals

Top

o

Design results in Quartus Prime error message:
The software cannot synthesize this

@ design and maintain incremental functionality.

Merged Partition Allows Synthesis to Convert Internal Tri-State Logic to
Combinational Logic

Top

combinational logic.

Merged Partition
i 3 Merged partition allows synthesis to
convert tri-state logic into

Do not use tri-state signals or bidirectional ports on hierarchical partition boundaries,
unless the port is connected directly to a top-level I/O pin on the device. If you must
use internal tri-state logic, ensure that all the control and destination logic is
contained in the same partition, in which case the Intel Quartus Prime software can
convert the internal tri-state signals into combinational logic as in a flat design. In this
example, you can also merge all three partitions into one partition, as shown in the
bottom figure, to allow the Intel Quartus Prime software to treat the logic as internal
tri-state and perform the same type of optimization as a flat design. If possible, you
should avoid using internal

tri-state logic in any Altera FPGA design to ensure that you get the desired
implementation when the design is compiled for the target device architecture.

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

90

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

]
2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments
683283 | 2018.09.24 ®

2.5.2.9. Include All Tri-State and Enable Logic in the Same Partition

When multiple output signals use tri-state logic to drive a device output pin, the Intel
Quartus Prime software merges the logic into one tri-state output pin. The Intel
Quartus Prime software cannot merge tri-state outputs into one output pin if any of
the tri-state logic occurs on a partition boundary. Similarly, output pins with an output
enable signal cannot be packed into the device I/O cell if the output enable logic is
part of a different partition from the output register. To allow register packing for
output pins with an output enable signal, structure your HDL code or design partition
assignments so that the register and enable logic are defined in the same partition.

The figure shows a design with tri-state output signals that feed a device bidirectional
I/0 pin (assuming that the input connection feeds elsewhere in the design and is not
shown in the figure). In the left diagram below, the tri-state output signals appear as
the outputs of two separate partitions. In this case, the Intel Quartus Prime software
cannot implement the specified logic and maintain incremental functionality. In the
right diagram, partitions A and B are merged to group the logic from the two blocks.
With this single partition, the Intel Quartus Prime software can merge the two tri-state
output signals and implement them in the tri-state logic available in the device I/O
element.

Figure 24. Including All Tri-State Output Logic in the Same Partition

Merged Partition
A
Top
B - >
Multiple tri-states on partition boundaries: Tri-state output logic within merged partition:
Illegal design partitions Better design partition

2.5.2.10. Summary of Guidelines Related to Logic Optimization Across Partitions

To ensure that your design does not require logic optimization across partitions, follow
the guidelines below:

e Include logic in the same partition for optimization and merging

e Include constants in the same partition as logic

e Avoid signals that drive multiple partition I/O or connect I/O together
e Invert clocks in destination partitions

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

91

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments
® 683283 | 2018.09.24

e Connect I/0 directly to I/O register for packing across partition boundaries
e Do not use internal tri-states
e Include all tri-state and enable logic in the same partition

Remember that these guidelines are not mandatory when implementing an
incremental compilation flow, but can improve the quality of results. When creating
source design code, follow these guidelines and organize your HDL code to support
good partition boundaries. For designs that are complete, assess whether assigning a
partition affects the resource utilization or timing performance of a design block as
compared to the flat design. Make the appropriate changes to your design or
hierarchy, or merge partitions as required, to improve your results.

2.5.3. Consider a Cascaded Reset Structure

Designs typically have a global asynchronous reset signal where a top-level signal
feeds all partitions. To minimize skew for the high fan-out signal, the global reset
signal is typically placed onto a global routing resource.

In some cases, having one global reset signal can lead to recovery and removal time
problems. This issue is not specific to incremental flows; it could be applicable in any
large high-speed design. In an incremental flow, the global reset signal creates a
timing dependency between the top-level partition and lower-level partitions.

For incremental compilation, it is helpful to minimize the impact of global structures.
To isolate each partition, consider adding reset synchronizers. Using cascaded reset
structures, the intent is to reduce the inter-partition fan-out of the reset signal,
thereby minimizing the effect of the global signal. Reducing the fan-out of the global
reset signal also provides more flexibility in routing the cascaded signals, and might
help recovery and removal times in some cases.

This recommendation can help in large designs, regardless of whether you are using
incremental compilation. However, if one global signal can feed all the logic in its
domain and meet recovery and removal times, this recommendation may not be
applicable for your design. Minimizing global structures is more relevant for
high-performance designs where meeting timing on the reset logic can be challenging.
Isolating each partition and allowing more flexibility in global routing structures is an
additional advantage in incremental flows.

If you add additional reset synchronizers to your design, latency is also added to the
reset path, so ensure that this is acceptable in your design. Additionally, parts of the
design may come out of the reset state in different clock cycles. You can balance the
latency or add hand-shaking logic between partitions, if necessary, to accommodate
these differences.

The signal is first synchronized on the chip following good synchronous design
practices, meaning that the design asynchronously resets, but synchronously releases
from reset to avoid any race conditions or metastability problems. Then, to minimize
the impact of global structures, the circuit employs a divide-and-conquer approach for
the reset structure. By implementing a cascaded reset structure, the reset paths for
each partition are independent. This structure reduces the effect of inter-partition
dependency because the inter-partition reset signals can now be treated as false paths
for timing analysis. In some cases, the reset signal of the partition can be placed on
local lines to reduce the delay added by routing to a global routing line. In other
cases, the signal can be routed on a regional or quadrant clock signal.

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

92

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments
683283 | 2018.09.24 ®

The figure shows a cascaded reset structure.

Figure 25. Cascaded Reset Structure

False Timing Top vee

Paths Ldp oo

A_Reset

lce 0 0
Th oI o 1 !

V(C
CLRN CLRN Lo o—p o
8 ? B_Reset

Reset

B CLRN CLRN

This circuit design can help you achieve timing closure and partition independence for
your global reset signal. Evaluate the circuit and consider how it works for your
design.

2.5.4. Design Partition Guidelines for Third-Party IP Delivery

There are additional design guidelines that can improve incremental compilation flows
where exported partitions are developed independently. These guidelines are not
always required, but are usually recommended if the design includes partitions
compiled in a separate Intel Quartus Prime project, such as when delivering
intellectual property (IP). A unique challenge of IP delivery for FPGAs is the fact that
the partitions developed independently must share a common set of resources. To
minimize issues that might arise from sharing a common set of resources, you can
design partitions within a single Intel Quartus Prime project, or a copy of the top-level
design. A common project ensures that designers have a consistent view of the top-
level design framework.

Alternatively, an IP designer can export just the post-synthesis results to be integrated
in the top-level design when the post-fitting results from the IP project are not
required. Using a post-synthesis netlist provides more flexibility to the Intel Quartus
Prime Fitter, so that less resource allocation is required. If a common project is not
possible, especially when the project lead plans to integrate the IP's post-fitting
results, it is important that the project lead and IP designer clearly communicate their
requirements.

Related Information
Project Management in Team-Based Design Flows on page 74

2.5.4.1. Allocate Logic Resources

In an incremental compilation design flow in which designers, such as third-party IP
providers, optimize partitions and then export them to a top-level design, the Intel
Quartus Prime software places and routes each partition separately. In some cases,
partitions can use conflicting resources when combined at the top level. Allocation of
logic resources requires that you decide on a set of logic resources (including 1I/O, LAB

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

93

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments
® 683283 | 2018.09.24

logic blocks, RAM and DSP blocks) that the IP block will “own”. This process can be
interactive; the project lead and the IP designer might work together to determine
what resources are required for the IP block and are available in the top-level design.

You can constrain logic utilization for the IP core using design floorplan location
assignments. The design should specify I/O pin locations with pin assignments.

You can also specify limits for Intel Quartus Prime synthesis to allocate and balance
resources. This procedure can also help if device resources are overused in the
individual partitions during synthesis.

In the standard synthesis flow, the Intel Quartus Prime software can perform
automated resource balancing for DSP blocks or RAM blocks and convert some of the
logic into regular logic cells to prevent overuse.

You can use the Intel Quartus Prime synthesis options to control inference of IP cores
that use the DSP, or RAM blocks. You can also use the IP Catalog and Parameter Editor
to customize your RAM or DSP IP cores to use regular logic instead of the dedicated
hardware blocks.

Related Information
Introduction to Design Floorplans on page 106

2.5.4.2. Allocate Global Routing Signals and Clock Networks if Required

In most cases, you do not have to allocate global routing signals because the

Intel Quartus Prime software finds the best solution for the global signals. However, if
your design is complex and has multiple clocks, especially for a partition developed by
a third-party IP designer, you may have to allocate global routing resources between
various partitions.

Global routing signals can cause conflicts when independent partitions are integrated
into a top-level design. The Intel Quartus Prime software automatically promotes high
fan-out signals to use global routing resources available in the device. Third-party
partitions can use the same global routing resources, thus causing conflicts in the top-
level design. Additionally, LAB placement depends on whether the inputs to the logic
cells within the LAB use a global clock signal. Problems can occur if a design does not
use a global signal in a lower-level partition, but does use a global signal in the top-
level design.

If the exported IP core is small, you can reduce the potential for problems by using
constraints to promote clock and high fan-out signals to regional routing signals that
cover only part of the device, instead of global routing signals. In this case, the Intel
Quartus Prime software is likely to find a routing solution in the top-level design
because there are many regional routing signals available on most Altera devices, and
designs do not typically overuse regional resources.

To ensure that an IP block can utilize a regional clock signal, view the resource
coverage of regional clocks in the Chip Planner, and then align LogicLock regions that
constrain partition placement with available global clock routing resources. For
example, if the LogicLock region for a particular partition is limited to one device
quadrant, that partition’s clock can use a regional clock routing type that covers only
one device quadrant. When all partition logic is available, the project lead can compile
the entire design at the top level with floorplan assignments to allow the use of
regional clocks that span only a part of the device.

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

94

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments
683283 | 2018.09.24 ®

If global resources are heavily used in the overall design, or the IP designer requires
global clocks for their partition, you can set up constraints to avoid signal overuse at
the top-level by assigning the appropriate type of global signals or setting a maximum
number of clock signals for the partition.

You can use the Global Signal assignment to force or prevent the use of a global
routing line, making the assignment to a clock source node or signal. You can also
assign certain types of global clock resources in some device families, such as regional
clocks. For example, if you have an IP core, such as a memory interface that specifies
the use of a dual regional clock, you can constrain the IP to part of the device covered
by a regional clock and change the Global Signal assignment to use a regional clock.
This type of assignment can reduce clocking congestion and conflicts.

Alternatively, partition designers can specify the number of clocks allowed in the
project using the maximum clocks allowed options in the Advanced Settings
(Fitter) dialog box. Specify Maximum number of clocks of any type allowed, or
use the Maximum number of global clocks allowed, Maximum number of
regional clocks allowed, and Maximum number of periphery clocks allowed
options to restrict the number of clock resources of a particular type in your design.

If you require more control when planning a design with integrated partitions, you can
assign a specific signal to use a particular clock network in newer device families by
assigning the clock control block instance called CLKCTRL. You can make a point-to-
point assignment from a clock source node to a destination node, or a single-point
assignment to a clock source node with the Global Clock CLKCTRL Location logic
option. Set the assignment value to the name of the clock control block:
CLKCTRL_G<global network number> for a global routing network, or
CLKCTRL_R<regional network number> for a dedicated regional routing network in
the device.

If you want to disable the automatic global promotion performed in the Fitter to
prevent other signals from being placed on global (or regional) routing networks, turn
off the Auto Global Clock and Auto Global Register Control Signals options in the
Advanced Settings (Fitter) dialog box.

If you are using design partition scripts for independent partitions, the Intel Quartus
Prime software can automatically write the commands to pass global constraints and
turn off automatic options.

Alternatively, to avoid problems when integrating partitions into the top-level design,
you can direct the Fitter to discard the placement and routing of the partition netlist
by using the post-synthesis netlist, which forces the Fitter to reassign all the global
signals for the partition when compiling the top-level design.

2.5.4.3. Assign Virtual Pins

Virtual pins map lower-level design I/0s to internal cells. If you are developing an IP
block in an independent Intel Quartus Prime project, use virtual pins when the number
of I/Os on a partition exceeds the device I/O count, and to increase the timing
accuracy of cross-partition paths.

You can create a virtual pin assignment in the Assignment Editor for partition I/Os that
will become internal nodes in the top-level design. When you apply the Virtual Pin
assignment to an input pin, the pin no longer appears as an FPGA pin, but is fixed to
GND or VCC in the design. The assigned pin is not an open node. Leave the clock pins
mapped to I/O pins to ensure proper routing.

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

95

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

I n t e I 2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments
®

Note:

683283 | 2018.09.24

You can specify locations for the virtual pins that correspond to the placement of other
partitions, and also make timing assignments to the virtual pins to define a timing
budget. Virtual pins are created automatically from the top-level design if you use
design partition scripts. The scripts place the virtual pins to correspond with the
placement of the other partitions in the top-level design.

Tri-state outputs cannot be assigned as virtual pins because internal tri-state signals
are not supported in Altera devices. Connect the signal in the design with regular
logic, or allow the software to implement the signal as an external device I/0 pin.

2.5.4.4. Perform Timing Budgeting if Required

Note:

If you optimize partitions independently and integrate them to the top-level design, or
compile with empty partitions, any unregistered paths that cross between partitions
are not optimized as entire paths. In these cases, the Intel Quartus Prime software
has no information about the placement of the logic that connects to the I/O ports. If
the logic in one partition is placed far away from logic in another partition, the routing
delay between the logic can lead to problems in meeting timing requirements. You can
reduce this effect by ensuring that input and output ports of the partitions are
registered whenever possible. Additionally, using the same top-level project
framework helps to avoid this problem by providing the software with full information
about other design partitions in the top-level design.

To ensure that the software correctly optimizes the input and output logic in any
independent partitions, you might be required to perform some manual timing
budgeting. For each unregistered timing path that crosses between partitions, make
timing assignments on the corresponding I/O path in each partition to constrain both
ends of the path to the budgeted timing delay. Assigning a timing budget for each part
of the connection ensures that the software optimizes the paths appropriately.

When performing manual timing budgeting in a partition for I/O ports that become
internal partition connections in a top-level design, you can assign location and timing
constraints to the virtual pin that represents each connection to further improve the
quality of the timing budget.

If you use design partition scripts, the Intel Quartus Prime software can write I/O
timing budget constraints automatically for virtual pins.

2.5.4.5. Drive Clocks Directly

When partitions are exported from another Intel Quartus Prime project, you should
drive partition clock inputs directly with device clock input pins.

Connecting the clock signal directly avoids any timing analysis difficulties with gated
clocks. Clock gating is never recommended for FPGA designs because of potential
glitches and clock skew. Clock gating can be especially problematic with exported
partitions because the partitions have no information about gating that takes place at
the top-level design or in another partition. If a gated clock is required in a partition,
perform the gating within that partition.

Direct connections to input clock pins also allows design partition scripts to send
constraints from the top-level device pin to lower-level partitions.

Related Information

Invert Clocks in Destination Partitions on page 85

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

96

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments
683283 | 2018.09.24 ®

2.5.4.6. Recreate PLLs for Lower-Level Partitions if Required

Figure 26.

If you connect a PLL in your top-level design to partitions designed in separate Intel
Quartus Prime projects by third-party IP designers, the IP partitions do not have
information about the multiplication, phase shift, or compensation delays for the PLL
in the top-level design. To accommodate the PLL timing, you can make appropriate
timing assignments in the projects created by IP designers to ensure that clocks are
not left unconstrained or constrained with an incorrect frequency. Alternatively, you
can duplicate the top-level PLL (or other derived clock logic) in the design file for the
project created by the IP designer to ensure that you have the correct PLL parameters
and clock delays for a complete and accurate timing analysis.

If the project lead creates a copy of the top-level project framework that includes all
the settings and constraints needed for the design, this framework should include PLLs
and other interface logic if this information is important to optimize partitions.

If you use a separate Intel Quartus Prime project for an independent design block
(such as when a designer or third-party IP provider does not have access to the entire
design framework), include a copy of the top-level PLL in the lower-level partition as
shown in figure.

In either case, the IP partition in the separate Intel Quartus Prime project should
contain just the partition logic that will be exported to the top-level design, while the
full project includes more information about the top-level design. When the partition is
complete, you can export just the partition without exporting the auxiliary PLL
components to the top-level design. When you export a partition, the Intel Quartus
Prime software exports any hierarchy under the specified partition into the Intel
Quartus Prime Exported Partition File (.gxp), but does not include logic defined
outside the partition (the PLL in this example).

Recreating a Top-Level PLL in a Lower-Level Partition

.TOLP Pa rti[ionl Virtual Virtual
in Lower-Leve Input Out
put

Project Pins Lower-Level Pins

Partition

i PLL From
Dewcclzclzput Top-Level to be ' Outputs to
Design Exported Device Pins
Other Inputs

from Device
Pins

2.6. Checking Partition Quality

There are several tools you can use to create and analyze partitions in the Intel
Quartus Prime software. Take advantage of these tools to assess your partition quality,
and use the information to improve your design or assignments as required to achieve
the best results.

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

97

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments
® 683283 | 2018.09.24

2.6.1. Incremental Compilation Advisor

You can use the Incremental Compilation Advisor to ensure that your design follows
Altera’s recommendations for creating design partitions and implementing the
incremental compilation design flow methodology. Each recommendation in the
Incremental Compilation Advisor provides an explanation, describes the effect of the
recommendation, and provides the action required to make the suggested change.

Related Information
e Incremental Compilation Advisor on page 98

e Intel Quartus Prime Incremental Compilation for Hierarchical and Team-Based
Design documentation on page 7

2.6.2. Design Partition Planner

The Design Partition Planner allows you to view design connectivity and hierarchy, and
can assist you in creating effective design partitions that follow the guidelines in this
manual. You can also use the Design Partition Planner to optimize design performance
by isolating and resolving failing paths on a partition-by-partition basis.

To view a design and create design partitions in the Design Partition Planner, you must
first compile the design, or perform Analysis & Synthesis. In the Design Partition
Planner, the design appears as a single top-level design block, with lower-level
instances displayed as color-specific boxes.

In the Design Partition Planner, you can show connectivity between blocks and extract
instances from the top-level design block. When you extract entities, connection
bundles are drawn between entities, showing the number of connections existing
between pairs of entities. When you have extracted a design block that you want to
set as a design partition, right-click that design block, and then click Create Design
Partition.

The Design Partition Planner also has an auto-partition feature that creates partitions
based on the size and connectivity of the hierarchical design blocks. You can right-click
the design block you want to partition (such as the top-level design hierarchy), and
then click Auto-Partition Children. You can then analyze and adjust the partition
assignments as required.

The figure shows the Design Partition Planner after making a design partition
assignment to one instance and dragging another instance away from the top-level
block within the same partition (two design blocks in the pale blue shaded box). The
figure shows the connections between each partition and information about the size of
each design instance.

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

98

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

]
2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments
683283 | 2018.09.24 ®

Figure 27. Design Partition Planner

i Design Partition Planner - C:/altera/10.0/quartus/qdesigns/fir_filter/... |: E|E|

File Edit WView Tools Window

REOE oo w8 B &

Show Timing Data
(for timing analyziz)

|fittref

37% of total design, 39 .. Switch to higrarchy
4 dildren: dizplay mods

[

in=t3

(RENT

30% of total de=ign, ...
Mo Children

32% of total design, 3...
1 Child:

ingtS|lprm_mult_compo... -

0% Top

£

You can switch between connectivity display mode and hierarchical display mode, to
examine the view-only hierarchy display. You can also remove the connection lines
between partitions and I/O banks by turning off Display connections to I/0 banks,
or use the settings on the Connection Counting tab in the Bundle Configuration
dialog box to adjust how the connections are counted in the bundles.

To optimize design performance, confine failing paths within individual design
partitions so that there are no failing paths passing between partitions. In the top-
level entity, child entities that contain failing paths are marked by a small red dot in
the upper right corner of the entity box.

To view the critical timing paths from a timing analyzer report, first perform a timing

analysis on your design, and then in the Design Partition Planner, click Show Timing
Data on the View menu.

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

99

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

intel.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments
683283 | 2018.09.24

2.6.3. Viewing Design Partition Planner and Floorplan Side-by-Side

Figure 28.

Intel Quartus Prime Standard Edition User Guide: Design Compilation

100

You can use the Design Partition Planner together with the Chip Planner to analyze
natural placement groupings. This information can help you decide whether the design
blocks should be grouped together in one partition, or whether they will make good
partitions in the next compilation. It can also help determine whether the logic can
easily be constrained by a LogicLock region. If logic naturally groups together when
compiled without placement constraints, you can probably assign a reasonably sized
LogicLock region to constrain the placement for subsequent compilations. You can
experiment by extracting different design blocks in the Design Partition Planner and
viewing the placement results of those design blocks from the previous compilation.

To view the Design Partition Planner and Chip Planner side-by-side, open the Design
Partition Planner, and then open the Chip Planner and select the Design Partition
Planner task. The Design Partition Planner task displays the physical locations of
design entities with the same colors as in the Design Partition Planner.

In the Design Partition Planner, you can extract instances of interest from their parents
by dragging and dropping, or with the Extract from Parent command. Evaluate the
physical locations of instances in the Chip Planner and the connectivity between
instances displayed in the Design Partition Planner. An entity is generally not suitable
to be set as a separate design partition or constrained in a LogicLock region if the Chip
Planner shows it physically dispersed over a noncontiguous area of the device after
compilation. Use the Design Partition Planner to analyze the design connections. Child
instances that are unsuitable to be set as separate design partitions or placed in
LogicLock regions can be returned to their parent by dragging and dropping, or with
the Collapse to Parent command.

The figure shows a design displayed in the Design Partition Planner and the Chip
Planner with different colors for the top-level design and the three major design
instances.

Design Partition Planner and Chip Planner

haoE oo 48 Da

Editing Mode: |Assignment - EP3SESOF484C2 ¥ | |Layers Settings

[
- Al
Chip Planner EN v
Design Partition Planner a
@ None
[Elock Utiization
a [7] Routing Utiization
| [1/0 Barks
|] Figh-speed. ow-power Ties
-4 Design Partition Planner
El LogicLock Regions.
s User-assigned LogicLock Regions
Fitter-placed LogicLock Regions
B, =[] Clock Regions
s, Global Clock Region
Local Clock Rregion
Y LVDS Clock Regi
Quadrant Clock Region
& P Clock Region
Z &[] Overlay Objects
o Connection Lines
des_insto & Lsbels
Differential Pin Pairs
33% of fotal de. = O Coordinates
&[] Routing Details
33% of total de. g6 H Local Routing
g o ®, Global Routing
[+ & Logic Details
E B, Logic Detalls
33% of total de. Ports
& =0 de Coloring
33% 2 BE| v None
desides_|. (23] [® Partition Based
8 B %, Utiization Level Based
) Gther
= Unused Resources
= Pin and Location Assignments
33% des:des_i =
Layers Settings | Color Lecend

D Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments
683283 | 2018.09.24 ®

2.6.4. Partition Statistics Report

You can view statistics about design partitions in the Partition Merge Partition
Statistics report and the Statistics tab of the Design Partitions Properties dialog
box. These reports are useful when optimizing your design partitions, or when
compiling the completed top-level design in a team-based compilation flow to ensure
that partitions meet the guidelines discussed in this manual.

The Partition Merge Partition Statistics report in the Partition Merge section of the
Compilation report lists statistics about each partition. The statistics for each partition
(each row in the table) include the number of logic cells, as well as the number of
input and output pins and how many are registered. This report also lists how many
ports are unconnected, or driven by a constant Vcc or GND. You can use this
information to assess whether you have followed the guidelines for partition
boundaries.

You can also view statistics about the resource and port connections for a particular
partition on the Statistics tab of the Design Partition Properties dialog box. The
Show All Partitions button allows you to view all the partitions in the same report.
The Partition Merge Partition Statistics report also shows statistics for the Internal
Congestion: Total Connections and Registered Connections. This information
represents how many signals are connected within the partition. It then lists the inter-
partition connections for each partition, which helps you to see how partitions are
connected to each other.

2.6.5. Report Partition Timing in the Timing Analyzer

The Report Partitions diagnostic report and the report_partitions SDC command
in the Timing Analyzer produce a Partition Timing Overview and Partition Timing
Details table, which lists the partitions, the number of failing paths, and the worst
case timing slack within each partition.

You can use these reports to analyze the location of the critical timing paths in the
design in relation to partitions. If a certain partition contains many failing paths, or
failing inter-partition paths, you might be able to change your partitioning scheme and
improve timing performance.

Related Information

Intel Quartus Prime Timing Analyzer documentation
Information about the Timing Analyzer report_timing command and reports

2.6.6. Check if Partition Assighnments Impact the Quality of Results

You can ensure that you limit negative effect on the quality of results by following an
iterative methodology during the partitioning process. In any incremental compilation
flow where you can compile the source code for every partition during the partition
planning phase, Altera recommends the following iterative flow:

1. Start with a complete design that is not partitioned and has no location or
LogicLock region assignments.

To run a full compilation, use the Start Compilation command.

2. Record the quality of results from the Compilation report (timing slack or fuax,
area and any other relevant results).

3. Create design partitions following the guidelines described in this manual.

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

101

https://www.intel.com/content/www/us/en/docs/programmable/683068.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments
® 683283 | 2018.09.24

Recompile the design.

5. Record the quality of results from the Compilation report. If the quality of results
is significantly worse than those obtained in the previous compilation, repeat step
3 through step 5 to change your partition assignments and use a different
partitioning scheme.

6. Even if the quality of results is acceptable, you can repeat step 3 through step 5
by further dividing a large partition into several smaller partitions, which can
improve compilation time in subsequent incremental compilations. You can repeat
these steps until you achieve a good trade-off point (that is, all critical paths are
localized within partitions, the quality of results is not negatively affected, and the
size of each partition is reasonable).

You can also remove or disable partition assignments defined in the top-level design at
any time during the design flow to compile the design as one flat compilation and get
all possible design optimizations to assess the results. To disable the partitions without
deleting the assignments, use the Ignore partition assignments during
compilation option on the Incremental Compilation page of the Settings dialog
box in the Intel Quartus Prime software. This option disables all design partition
assignments in your project and runs a full compilation, ignoring all partition
boundaries and netlists. This option can be useful if you are using partitions to reduce
compilation time as you develop various parts of the design, but can run a long
compilation near the end of the design cycle to ensure the design meets its timing
requirements.

2.7. Including SDC Constraints from Lower-Level Partitions for
Third-Party IP Delivery

When exported partitions are compiled in a separate Intel Quartus Prime project, such
as when a third-party designer is delivering IP, the project lead must transfer the top-
level project framework information and constraints to the partitions, so that each
designer has a consistent view of the constraints that apply to the entire design. If the
independent partition designers make any changes or add any constraints, they might
have to transfer new constraints back to the project lead, so that these constraints are
included in final timing sign-off of the entire design. Many assignments from the
partition are carried with the partition into the top-level design; however, SDC format
constraints for the Timing Analyzer are not copied into the top-level design
automatically.

Passing additional timing constraints from a partition to the top-level design must be
managed carefully. You can design within a single Intel Quartus Prime project or a
copy of the top-level design to simplify constraint management.

To ensure that there are no conflicts between the project lead’s top-level constraints
and those added by the third-party IP designer, use two .sdc files for each separate
Intel Quartus Prime project: an .sdc created by the project lead that includes project-
wide constraints, and an .sdc created by the IP designer that includes partition-
specific constraints.

The example design shown in the figure below is used to illustrate recommendations
for managing the timing constraints in a third-party IP delivery flow. The top-level
design instantiates a lower-level design block called module_A that is set as a design
partition and developed by an IP designer in a separate Intel Quartus Prime project.

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

102

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments
683283 | 2018.09.24

Figure 29.

Example Design to Illustrate SDC Constraints

Do Pmoduie A

NPUT_CLK DATA_OUT e D 1 e a5
DATA_IN_1 i

DATALIN_Z | e

In this top-level design, there is a single clock setting called clk associated with the
FPGA input called top_level clk. The top-level .sdc contains the following
constraint for the clock:

create_clock -name {clk} -period 3.000 -waveform { 0.000 1.500 } \
[get_ports {TOP_LEVEL CLK}]

2.7.1. Creating an .sdc File with Project-Wide Constraints

The .sdc with project-wide constraints for the separate Intel Quartus Prime project
should contain all constraints that are not completely localized to the partition.

The .sdc should be maintained by the project lead. The project lead must ensure that
these timing constraints are delivered to the individual partition owners and that they
are syntactically correct for each of the separate Intel Quartus Prime projects. This
communication can be challenging when the design is in flux and hierarchies change.
The project lead can use design partition scripts to automatically pass some of these
constraints to the separate Intel Quartus Prime projects.

The .sdc with project-wide constraints is used in the partition, but is not exported
back to the top-level design. The partition designer should not modify this file. If
changes are necessary, they should be communicated to the project lead, who can
then update the SDC constraints and distribute new files to all partition designers as
required.

The .sdc should include clock creation and clock constraints for any clock used by
more than one partition. These constraints are particularly important when working
with complex clocking structures, such as the following:

e Cascaded clock multiplexers

e Cascaded PLLs

e Multiple independent clocks on the same clock pin

e Redundant clocking structures required for secure applications

e Virtual clocks and generated clocks that are consistently used for source
synchronous interfaces

e Clock uncertainties

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

103

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments
® 683283 | 2018.09.24

Additionally, the .sdc with project-wide constraints should contain all project-wide
timing exception assignments, such as the following:

e Multicycle assignments, set_multicycle_path
* False path assignments, set_false_ path
e Maximum delay assignments, set_max_delay

e Minimum delay assignments, set_min_delay

The project-wide .sdc can also contain any set_input_delay or
set_output_delay constraints that are used for ports in separate Intel Quartus
Prime projects, because these represent delays external to a given partition. If the
partition designer wants to set these constraints within the separate Intel Quartus
Prime projects, the team must ensure that the I/O port hames are identical in all
projects so that the assignments can be integrated successfully without changes.

Similarly, a constraint on a path that crosses a partition boundary should be in the
project-wide .sdc, because it is not completely localized in a separate Intel Quartus
Prime project.

2.7.1.1. Example Step 1—Project Lead Produces .sdc with Project-Wide
Constraints for Lower-Level Partitions

The device input top_level clk in Figure 29 on page 103 drives the input_clk
port of modulle_A. To make sure the clock constraint is passed correctly to the

partition, the project lead creates an .sdc with project-wide constraints for module_A
that contains the following command:

create_clock -name {clk} -period 3.000 -waveform { 0.000 1.500 } [get_ports
{INPUT_CLK}]

The designer of module_A includes this .sdc as part of the separate Intel Quartus
Prime project.

2.7.2. Creating an .sdc with Partition-Specific Constraints

The .sdc with partition-specific constraints should contain all constraints that affect
only the partition. For example, a set_false_path or set_multicycle_path
constraint for a path entirely within the partition should be in the partition-

specific .sdc. These constraints are required for correct compilation of the partition,
but do not need to be present in any other separate Intel Quartus Prime projects.

The partition-specific . sdc should be maintained by the partition designer; they must
add any constraints required to properly compile and analyze their partition.

The partition-specific .sdc is used in the separate Intel Quartus Prime project and
must be exported back to the project lead for the top-level design. The project lead
must use the partition-specific constraints to properly constrain the placement,

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

104

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments
683283 | 2018.09.24 ®

routing, or both, if the partition logic is fit at the top level, and to ensure that final
timing sign-off is accurate. Use the following guidelines in the partition-specific .sdc
to simplify these export and integration steps:

e Create a hierarchy variable for the partition (such as module_A_hierarchy) and
set it to an empty string because the partition is the top-level instance in the
separate Intel Quartus Prime project. The project lead modifies this variable for
the top-level hierarchy, reducing the effort of translating constraints on lower-level
design hierarchies into constraints that apply in the top-level hierarchy. Use the
following Tcl command first to check if the variable is already defined in the
project, so that the top-level design does not use this empty hierarchy path: i
{!'[info exists module_ A hierarchy]}.

e Use the hierarchy variable in the partition-specific .sdc as a prefix for
assignments in the project. For example, instead of naming a particular instance
of a register reg: inst, use ${module_A_hierarchy}reg:inst. Also, use the
hierarchy variable as a prefix to any wildcard characters (such as ” * ”).

e Pay attention to the location of the assignments to I/O ports of the partition. In
most cases, these assignments should be specified in the .sdc with project-wide
constraints, because the partition interface depends on the top-level design. If you
want to set I/0O constraints within the partition, the team must ensure that the I/0O
port names are identical in all projects so that the assignments can be integrated
successfully without changes.

e Use caution with the derive_clocks and derive_pll_clocks commands. In
most cases, the .sdc with project-wide constraints should call these commands.
Because these commands impact the entire design, integrating them unexpectedly
into the top-level design might cause problems.

If the design team follows these recommendations, the project lead should be able to
include the .sdc with the partition-specific constraints provided by the partition
designer directly in the top-level design.

2.7.2.1. Example Step 2—Partition Designer Creates .sdc with Partition-Specific
Constraints

The partition designer compiles the design with the .sdc with project-wide constraints
and might want to add some additional constraints. In this example, the designer
realizes that he or she must specify a false path between the register called
reg_in_1 and all destinations in this design block with the wildcard character (such
as ” * "). This constraint applies entirely within the partition and must be exported to
the top-level design, so it qualifies for inclusion in the .sdc with partition-specific
constraints. The designer first defines the module_A_hierarchy variable and uses it
when writing the constraint as follows:

if {I[info exists module_A_hierarchy]} {
set module_A hierarchy "

set_false_path -from [get_registers ${module_A_ hierarchy}reg_in_1] \
-to [get_registers ${module_A_hierarchy}*]

2.7.3. Consolidating the .sdc in the Top-Level Design

When the partition designers complete their designs, they export the results to the
project lead. The project lead receives the exported .qxp files and a copy of the .sdc
with partition-specific constraints.

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

105

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments
® 683283 | 2018.09.24

To set up the top-level .sdc constraint file to accept the .sdc files from the separate
Intel Quartus Prime projects, the top-level .sdc should define the hierarchy variables
specified in the partition .sdc files. List the variable for each partition and set it to the
hierarchy path, up to and including the instantiation of the partition in the top-level
design, including the final hierarchy character “|".

To ensure that the .sdc files are used in the correct order, the project lead can use
the Tcl Source command to load each .sdc.

2.7.3.1. Example Step 3—Project Lead Performs Final Timing Analysis and Sign-
off

With these commands, the top-level .sdc file looks like the following example:

create_clock -name {clk} -period 3.000 -waveform { 0.000 1.500 } \
[get_ports {TOP_LEVEL_CLK}]

Include the lower-level SDC file

set module_A_ hierarchy "module_A:inst|" # Note the final "|" character
source <partition-specific constraint file such as ..\module_A
\module_A_constraints>._sdc

When the project lead performs top-level timing analysis, the false path assignment
from the lower-level module_A project expands to the following:

set_false_path -from module_A:inst]reg_in_1 -to module_A:inst]*

Adding the hierarchy path as a prefix to the SDC command makes the constraint legal
in the top-level design, and ensures that the wildcard does not affect any nodes
outside the partition that it was intended to target.

2.8. Introduction to Design Floorplans

A floorplan represents the layout of the physical resources on the device. Creating a
design floorplan, or floorplanning, describes the process of mapping the logical design
hierarchy onto physical regions in the device.

In the Intel Quartus Prime software, LogicLock regions can be used to constrain blocks
of a design to a particular region of the device. LogiclLock regions represent an area on
the device with a user-defined or Fitter-defined size and location in the device layout.

Related Information

Analyzing and Optimizing the Design Floorplan with the Chip Planner documentation

2.8.1. The Difference between Logical Partitions and Physical Regions

Design partitions are logical entities based on the design hierarchy. LogicLock regions
are physical placement assignments that constrain logic to a particular region on the
device.

A common misconception is that logic from a design partition is always grouped
together on the device when you use incremental compilation. Actually, logic from a
partition can be placed anywhere in the device if it is not constrained to a LogicLock
region, although the Fitter can pack related logic together to improve timing
performance. A logical design partition does not refer to any physical area on the
device and does not directly control where instances are placed on the device.

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

106

https://www.intel.com/content/www/us/en/docs/programmable/683230/current/analyzing-and-optimizing-the-design-03170.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments
683283 | 2018.09.24 ®

If you want to control the placement of logic from a design partition and isolate it to a
particular part of the device, you can assign the logical design partition to a physical
region in the device floorplan with a LogicLock region assignment. Altera recommends
creating a design floorplan by assigning design partitions to LogicLock regions to
improve the quality of results and avoid placement conflicts in some situations for
incremental compilation.

Another misconception is that LogicLock assignments are used to preserve placement
results for incremental compilation. Actually, LogicLock regions only constrain logic to
a physical region on the device. Incremental compilation does not use LogicLock
assignments or any location assignments to preserve the placement results; it simply
reuses the results stored in the database netlist from a previous compilation.

2.8.2. Why Create a Floorplan?

Creating a design floorplan is usually required if you want to preserve placement for
partitions that will be exported, to avoid resource conflicts between partitions in the
top-level design. Floorplan location planning can be important for a design that uses
incremental compilation, for the following reasons:

e To avoid resource conflicts between partitions, predominantly when integrating
partitions exported from another Intel Quartus Prime project.

e To ensure good quality of results when recompiling individual timing-critical
partitions.

Location assignments for each partition ensure that there are no placement conflicts
between partitions. If there are no LogicLock region assignments, or if LogicLock
regions are set to auto-size or floating location, no device resources are specifically
allocated for the logic associated with the region. If you do not clearly define resource
allocation, logic placement can conflict when you integrate the partitions in the top-
level design if you reuse the placement information from the exported netlist.

Creating a floorplan is also recommended for timing-critical partitions that have little
timing margin to maintain good quality of results when the design changes.

Floorplan assignments are not required for non-critical partitions compiled in the same
Intel Quartus Prime project. The logic for partitions that are not timing-critical can be
placed anywhere in the device on each recompilation if that is best for your design.

Design floorplan assignments prevent the situation in which the Fitter must place a
partition in an area of the device where most resources are used by other partitions. A
LogicLock region provides a reasonable region to re-place logic after a change, so the
Fitter does not have to scatter logic throughout the available space in the device.

The figure illustrates the problems that may be associated with refitting designs that
do not have floorplan location assignments. The left floorplan shows the initial
placement of a four-partition design (P1-P4) without any floorplan location
assignments. The right floorplan shows the device if a change occurs to P3. After
removing the logic for the changed partition, the Fitter must re-place and reroute the
new logic for P3 in the scattered white space. The placement of the post-fit netlists for
other partitions forces the Fitter to implement P3 with the device resources that have
not been used.

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

107

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

|
2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments
® 683283 | 2018.09.24

Figure 30. Representation of Device Floorplan without Location Assignments

ChangeinP3 —>

No floorplan assignments: Device has 4 partitions Device after removing changed partition P3:
and the logic is placed throughout New P3 must be placed in empty areas

The Fitter has a more difficult task because of more difficult physical constraints, and
as a result, compilation time often increases. The Fitter might not be able to find any
legal placement for the logic in partition P3, even if it could in the initial compilation.
Additionally, if the Fitter can find a legal placement, the quality of results often
decreases in these cases, sometimes dramatically, because the new partition is now
scattered throughout the device.

The figure below shows the initial placement of a four-partition design with floorplan
location assignments. Each partition is assigned to a LogicLock region. The second
part of the figure shows the device after partition P3 is removed. This placement
presents a much more reasonable task to the Fitter and yields better results.

Figure 31. Representation of Device Floorplan with Location Assignments

P3
ChangeinP3 —

With floorplan location assignments: Device has Device after removing changed partition P3:
4 partitions placed in 4 LogicLock regions Much easier to place new P3 partition in empty area

Altera recommends that you create a LogicLock floorplan assignment for timing-critical
blocks with little timing margin that will be recompiled as you make changes to the
design.

2.8.3. When to Create a Floorplan

It is important that you plan early to incorporate partitions into the design, and ensure
that each partition follows partitioning guidelines. You can create floorplan
assignments at different stages of the design flow, early or late in the flow. These
guidelines help ensure better results as you begin creating floorplan location
assignments.

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

108

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments
683283 | 2018.09.24 ®

2.8.3.1. Early Floorplan

An early floorplan is created before the design stage. You can plan an early floorplan
at the top level of a design to allocate each partition a portion of the device resources.
Doing so allows the designer for each block to create the logic for their design
partition without conflicting with other logic. Each partition can be optimized in a
separate Intel Quartus Prime project if required, and the design can still be easily
integrated in the top-level design. Even within one Intel Quartus Prime project, each
partition can be locked down with a post-fit netlist, and you can be sure there is space
in the device floorplan for other partitions.

When you have compiled your complete design, or after you have integrated the first
versions of partitions developed in separate Intel Quartus Prime projects, you can use
the design information and Intel Quartus Prime features to tune and improve the
floorplan .

2.8.3.2. Late Floorplan

A late floorplan is created or modified after the design is created, when the code is
close to complete and the design structure is likely to remain stable. Creating a late
floorplan is typically necessary only if you are starting to use incremental compilation
late in the design flow, or need to reserve space for a logic block that becomes timing-
critical but still has HDL changes to be integrated. When the design is complete, you
can take advantage of the Intel Quartus Prime analysis features to check the floorplan
quality. To adjust the floorplan, you can perform iterative compilations as required and
assess the results of different assignments.

Note: It may not be possible to create a good-quality late floorplan if you do not create
partitions in the early stages of the design.

2.9. Design Floorplan Placement Guidelines

The following guidelines are key to creating a good design floorplan:
e Capture correct resources in each region.

e Use good region placement to maintain design performance compared to flat
compilation.

A common misconception is that creating a floorplan enhances timing performance, as
compared to a flat compilation with no location assignments. The Fitter does not
usually require guidance to get optimal results for a full design.

Floorplan assignments can help maintain good performance when designs change
incrementally. However, poor placement assignments in an incremental compilation
can often adversely affect performance results, as compared to a flat compilation,
because the assignments limit the options for the Fitter. Investing time to find good
region placement is required to match the performance of a full flat compilation.

2.9.1. Flow for Creating a Floorplan

Use the following general procedure to create a floorplan:

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

109

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments
® 683283 | 2018.09.24

Divide the design into partitions.
Assign the partitions to LogicLock regions.
Compile the design.

A W N BB

Analyze the results.
5. Modify the placement and size of regions, as required.

You might have to perform these steps several times to find the best combination of
design partitions and LogicLock regions that meet the resource and timing goals of the
design.

Related Information

Intel Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design
documentation on page 7

2.9.2. Assigning Partitions to LogicLock Regions

Before compiling a design with new LogicLock assignments, ensure that the partition
netlist type is set to Post-Synthesis or Source File, so that the Fitter does not reuse
previous placement results.

In most cases, you should include logic from one partition in each LogicLock region.
This organization helps to prevent resource conflicts when partitions are exported and
can lead to better performance preservation when locking down parts of a design in a
single project.

The Intel Quartus Prime software is flexible and allows exceptions to this rule. For
example, you can place more than one partition in the same LogicLock region if the
partitions are tightly connected, but you do not want to merge the partitions into one
larger partition. For best results, ensure that you recompile all partitions in the
LogicLock region every time the logic in one partition changes. Additionally, if a
partition contains multiple lower-level entities, you can place those entities in different
areas of the device with multiple LogicLock regions, even if they are defined in the
same partition.

You can use the Reserved LogicLock option to ensure that you avoid conflicts with
other logic that is not locked into a LogicLock region. This option prevents other logic
from being placed in the region, and is useful if you have empty partitions at any point
during your design flow, so that you can reserve space in the floorplan. Do not make
reserved regions too large to prevent unused area because no other logic can be
placed in a region with the Reserved LogicLock option.

Related Information

LogicLock Region Properties Dialog Box online help

2.9.3. How to Size and Place Regions

In an early floorplan, assign physical locations based on design specifications. Use
information about the connections between partitions, the partition size, and the type
of device resources required.

In a late floorplan, when the design is complete, you can use locations or regions
chosen by the Fitter as a guideline. If you have compiled the full design, you can view
the location of the partition logic in the Chip Planner. You can use the natural grouping

Intel Quartus Prime Standard Edition User Guide: Design Compilation D Send Feedback

110

http://quartushelp.altera.com/current/index.htm#optimize/lock/asd_com_logiclock_properties.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments
683283 | 2018.09.24 ®

of each unconstrained partition as a starting point for a LogicLock region constraint.
View the placement for each partition that requires a floorplan constraint, and create a
new LogicLock region by drawing a box around the area on the floorplan, and then
assigning the partition to the region to constrain the partition placement.

Instead of creating regions based on the previous compilation results, you can start
with the Fitter results for a default auto size and floating origin location for each new
region when the design logic is complete. After compilation, lock the size and origin
location.

Alternatively, if the design logic is complete with auto-sized or floating location
regions, you can specify the size based on the synthesis results and use the locations
chosen by the Fitter with the Set to Estimated Size command. Like the previous
option, start with floating origin location. After compilation, lock the origin location.
You can also enable the Fast Synthesis Effort setting to reduce synthesis time.

After a compilation, save the Fitter size and origin location of the Fitter with the Set
Size and Origin to Previous Fitter Results command.

Note: It is important that you use the Fitter-chosen locations only as a starting point to give
the regions a good fixed size and location. Ensure that all LogicLock regions in the
design have a fixed size and have their origin locked to a specific location on the
device. On average, regions with fixed size and location yield better timing
performance than auto-sized regions.

Related Information

Checking Partition Quality on page 97

2.9.4. Modifying Region Size and Origin

After saving the Fitter results from an initial compilation for a late floorplan, modify
the regions using your knowledge of the design to set a specific size and location. If
you have a good understanding of how the design fits together, you can often improve
upon the regions placed in the initial compilation. In an early floorplan, when the
design has not yet been created, you can use the guidelines in this section to set the
size and origin, even though there is no initial Fitter placement.

The easiest way to move and resize regions is to drag the region location and borders
in the Chip Planner. Make sure that you select the User-Defined region in the
floorplan (as opposed to the Fitter-Placed region from the last compilation) so that
you can change the region.

Generally, you can keep the Fitter-determined relative placement of the regions, but
make adjustments if required to meet timing performance. Performing a full
compilation ensures that the Fitter can optimize for a full placement and routing.

If two LogicLock regions have several connections between them, ensure they are
placed near each other to improve timing performance. By placing connected regions
near each other, the Fitter has more opportunity to optimize inter-region paths when
both partitions are recompiled. Reducing the criticality of inter-region paths also allows
the Fitter more flexibility when placing other logic in each region.

If resource utilization is low in the overall device, enlarge the regions. Doing so usually
improves the final results because it gives the Fitter more freedom to place additional
or modified logic added to the partition during subsequent incremental compilations. It
also allows room for optimizations such as pipelining and logic duplication.

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

111

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments
® 683283 | 2018.09.24

Try to have each region evenly full, with the same “fullness” that the complete design
would have without LogicLock regions; Altera recommends approximately 75% full.

Allow more area for regions that are densely populated, because overly congested
regions can lead to poor results. Allow more empty space for timing-critical partitions
to improve results. However, do not make regions too large for their logic. Regions
that are too large can result in wasted resources and also lead to suboptimal results.

Ideally, almost the entire device should be covered by LogicLock regions if all
partitions are assigned to regions.

Regions should not overlap in the device floorplan. If two partitions are allocated on
an overlapping portion of the chip, each may independently claim common resources
in this region. This leads to resource conflicts when integrating results into a top-level
design. In a single project, overlapping regions give more difficult constraints to the
Fitter and can lead to reduced quality of results.

You can create hierarchical LogicLock regions to ensure that the logic in a child
partition is physically placed inside the LogicLock region for its parent partition. This
can be useful when the parent partition does not contain registers at the boundary
with the lower-level child partition and has a lot of signal connectivity. To create a
hierarchical relationship between regions in the LogicLock Regions window, drag and
drop the child region to the parent region.

2.9.5. I/0 Connections

Consider I/0 timing when placing regions. Using I/0 registers can minimize I/0 timing
problems, and using boundary registers on partitions can minimize problems
connecting regions or partitions. However, I/0O timing might still be a concern. It is
most important for flows where each partition is compiled independently, because the
Fitter can optimize the placement for paths between partitions if the partitions are
compiled at the same time.

Place regions close to the appropriate I/0, if necessary. For example, DDR memory
interfaces have very strict placement rules to meet timing requirements. Incorporate
any specific placement requirements into your floorplan as required. You should create
LogicLock regions for internal logic only, and provide pin location assignments for
external device I/0 pins (instead of including the I/O cells in a LogicLock region to
control placement).

2.9.6. LogicLock Resource Exclusions

You can exclude certain resource types from a LogicLock region to manage the ratio of
logic to dedicated DSP and RAM resources in the region.

If your design contains memory or Digital Signal Processing (DSP) elements, you may
want to exclude these elements from the LogicLock region. LogicLock resource
exceptions prevent certain types of elements from being assigned to a region.
Therefore, those elements are not required to be placed inside the region boundaries.
The option does not prevent them from being placed inside the region boundaries
unless the Reserved property of the region is turned on.

Resource exceptions are useful in cases where it is difficult to place rectangular
regions for design blocks that contain memory and DSP elements, due to their
placement in columns throughout the device floorplan. Exclude RAMs, DSPs, or logic
cells to give the Fitter more flexibility with region sizing and placement. Excluding RAM

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

112

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

u
2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments
683283 | 2018.09.24 ®

or DSP elements can help to resolve no-fit errors that are caused by regions spanning
too many resources, especially for designs that are memory-intensive, DSP-intensive,
or both. The figure shows an example of a design with an odd-shaped region to
accommodate DSP blocks for a region that does not contain very much logic. The right
side of the figure shows the result after excluding DSP blocks from the region. The
region can be placed more easily without wasting logic resources.

Figure 32. LogicLock Resource Exclusion Example

Exclude DSP
blocks from
LogicLock region

= =

2 | E R ATE
DSP blocks force Allows better shape, easier

odd-shaped region placement, and less unused

logic resources

To view any resource exceptions, right-click in the LogicLock Regions window, and
then click LogicLock Regions Properties. In the LogicLock Regions Properties
dialog box, select the design element (module or entity) in the Members box, and
then click Edit. In the Edit Node dialog box, to set up a resource exception, click the
Edit button next to the Excluded element types box, and then turn on the design
element types to be excluded from the region. You can choose to exclude
combinational logic or registers from logic cells, or any of the sizes of TriMatrix
memory blocks, or DSP blocks.

If the excluded logic is in its own lower-level design entity (even if it is within the
same design partition), you can assign the entity to a separate LogicLock region to
constrain its placement in the device.

You can also use this feature with the LogicLock Reserved property to reserve specific
resources for logic that will be added to the design.

2.9.6.1. Creating Floorplan Location Assignments With Tcl Commands—Excluding
or Filtering Certain Device Elements (Such as RAM or DSP Blocks)

To assign a code block to a LogicLock region, with exclusions, use the following
command:

set_logiclock_contents -region <LogicLock region name> \
-to <block> -exceptions \"<keyword>:<keyword>""

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

113

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

I n t e I 2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments
®

Note:

683283 | 2018.09.24

e <logicLock region name>—The name of the LogicLock region to which the code
block is assigned.

e <block>—A code block in a Intel Quartus Prime project hierarchy, which can also
be a design partition.

e <keyword>—The list of exceptions made during assignment. For example, if DSP
was in the keyword list, the named block of code would be assigned to the
LogicLock region, except for any DSP block within the code block. You can include
the following exceptions in the set_logiclock _contents command:

Keyword variables:

e REGISTER—Any registers in the logic cells.

e COMBINATIONAL—Any combinational elements in the logic cells.

e SMALL MEM—Small TriMatrix memory blocks (M512 or MLAB).

e MEDIUMEM_MEM—Medium TriMatrix memory blocks (M4K or M9K).

e LARGE_MEM—Large TriMatrix memory blocks (M-RAM or M144K).

e DSP—Any DSP blocks.

e VIRTUAL_PIN—Any virtual pins.

Resource filtering uses the optional Tcl argument —exclude_resources in the
set_logiclock contents function. If left unspecified, no resource filter is created.
In the .gsT, resource filtering uses an extra LogicLock membership assignment called
LL_MEMBER_RESOURCE_EXCLUDE. For example, the following line in the .qs¥ is used
to specify a resource filter for the alu:alu_unit entity assigned to the ALU region.

set_instance_assignment -name LL_MEMBER_RESOURCE_EXCLUDE \
""'DSP:SMALL_MEM™ -to "alu:alu_unit" -section_id ALU

2.9.7. Creating Non-Rectangular Regions

To constrain placement to non-rectangular or non-contiguous areas of the device, you
can connect multiple rectangular regions together using the Merge command.

For devices that do not support the Merge command (MAX™ II devices), you can limit
entity placement to a sub-area of a LogicLock region to create non-rectangular
constraints. In these devices, construct a LogicLock hierarchy by creating child regions
inside of parent regions, and then use the Reserved option to control which logic can
be placed inside these child regions. Setting the Reserved option for the region
prevents the Fitter from placing nodes that are not assigned to the region inside the
boundary of the region.

2.10. Checking Floorplan Quality

The Intel Quartus Prime software has several tools to help you create a floorplan. You
can use these tools to assess your floorplan quality and use the information to
improve your design or assignments as required to achieve the best results.

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

114

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments
683283 | 2018.09.24 ®

2.10.1. Incremental Compilation Advisor

You can use the Incremental Compilation Advisor to check that your design follows the
recommendations for creating floorplan location assignments that are presented in
this manual.

2.10.2. LogicLock Region Resource Estimates

You can view resource estimates for a LogicLock region to determine the region’s
resource coverage, and use this estimate before compilation to check region size.
Using this estimate helps to ensure adequate resources when you are sizing or moving
regions.

2.10.3. LogicLock Region Properties Statistics Report

LogicLock region statistics are similar to design partition properties, but also include
resource usage details after compilation.

The statistics report the number of resources used and the total resources covered by
the region, and also lists the number of I/O connections and how many I/Os are
registered (good), as well as the number of internal connections and the number of
inter-region connections (bad).

2.10.4. Locate the Intel Quartus Prime Timing Analyzer Path in the Chip
Planner

In the Timing Analyzer user interface, you can locate a specific path in the Chip
Planner to view its placement and perform a report timing operation (for example,
report timing for all paths with less than 0 ns slack).

2.10.5. Inter-Region Connection Bundles

The Chip Planner can display bundles of connections between LogicLock regions, with
filtering options that allow you to choose the relevant data for display. These bundles
can help you to visualize how many connections there are between each LogicLock
region to improve floorplan assignments or to change partition assignments, if
required.

2.10.6. Routing Utilization

The Chip Planner includes a feature to display a color map of routing congestion. This
display helps identify areas of the chip that are too tightly packed.

In the Chip Planner, red LAB blocks indicate higher routing congestion. You can
position the mouse pointer over a LAB to display a tooltip that reports the logic and
routing utilization information.

2.10.7. Ensure Floorplan Assignments Do Not Significantly Impact Quality
of Results

The end results of design partitioning and floorplan creation differ from design to
design. However, it is important to evaluate your results to ensure that your scheme is
successful. Compare your before and after results, and consider using another scheme
if any of the following guidelines are not met:

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

115

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

I n t e I 2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments
®

683283 | 2018.09.24

e You should see only minor degradation in fyax after the design is partitioned and
floorplan location assignments are created. There is some performance cost
associated with setting up a design for incremental compilation; approximately 3%
is typical.

e The area increase should be no more than 5% after the design is partitioned and
floorplan location assignments are created.

e The time spent in the routing stage should not significantly increase.

The amount of compilation time spent in the routing stage is reported in the Messages
window with an Info message that indicates the elapsed time for Fitter routing
operations. If you notice a dramatic increase in routing time, the floorplan location
assignments may be creating substantial routing congestion. In this case, decrease
the number of LogicLock regions, which typically reduces the compilation time in
subsequent incremental compilations and may also improve design performance.

2.11. Recommended Design Flows and Application Examples

Listed below are application examples with design flows for partitioning and creating a
design floorplan during common timing closure and team-based design scenarios.
Each flow describes the situation in which it should be used, and provides a step-by-
step description of the commands required to implement the flow.

2.11.1. Create a Floorplan for Major Design Blocks

Use this incremental compilation flow for designs when you want to assign a floorplan
location for each major block in your design. A full floorplan ensures that partitions do
not interact as they are changed and recompiled— each partition has its own area of
the device floorplan.

To create a floorplan for major design blocks, follow this general methodology:

1. In the Design Partitions window, ensure that all partitions have their netlist type
set to Source File or Post-Synthesis. If the netlist type is set to Post-Fit,
floorplan location assignments are not used when recompiling the design.

2. Create a LogicLock region for each partition (including the top-level entity, which
is set as a partition by default).

3. Run a full compilation of your design to view the initial Fitter-chosen placement of
the LogicLock regions as a guideline.

4. In the Chip Planner, view the placement results of each partition and LogicLock
region on the device.

5. 1If required, modify the size and location of the LogicLock regions in the Chip
Planner. For example, enlarge the regions to fill up the device and allow for future
logic changes.You can also, if needed, create a new LogicLock region by drawing a
box around an area on the floorplan.

6. Run the Compiler with the Start Compilation command to determine the timing
performance of your design with the modified or new LogicLock regions.

7. Repeat steps 5 and 6 until you are satisfied with the quality of results for your
design floorplan. Once you are satisfied with your results, run a full compilation of
your design.

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

116

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments
683283 | 2018.09.24 ®

2.11.2. Create a Floorplan Assignment for One Designh Block with Difficult
Timing

Use this flow when you have one timing-critical design block that requires more
optimization than the rest of your design. You can take advantage of incremental
compilation to reduce your compilation time without creating a full design floorplan.

In this scenario, you do not want to create floorplan assignments for the entire design.
Instead, you can create a region to constrain the location of your critical design block,
and allow the rest of the logic to be placed anywhere on the device. To create a region
for critical design block, follow these steps:

1. Divide up your design into partitions. Ensure that you isolate the timing-critical
logic in a separate partition.

2. Define a LogicLock region for the timing-critical partition. Ensure that you capture
the correct amount of device resources in the region. Turn on the Reserved
property to prevent any other logic from being placed in the region.

e If the design block is not complete, reserve space in the design floorplan
based on your knowledge of the design specifications, connectivity between
design blocks, and estimates of the size of the partition based on any initial
implementation numbers.

e If the critical design block has initial source code ready, compile the design to
place the LogicLock region. Save the Fitter-determined size and origin, and
then enlarge the region to provide more flexibility and allow for future design
changes.

As the rest of the design is completed, and the device fills up, the timing-critical
region reserves an area of the floorplan. When you make changes to the design
block, the logic will be re-placed in the same part of the device, which helps
ensure good quality of results.

Related Information

Design Partition Guidelines on page 80

2.11.3. Create a Floorplan as the Project Lead in a Team-Based Flow

Use this approach when you have several designs that will be implemented in separate
Intel Quartus Prime projects by different designers, or third-party IP designers who
want to optimize their designs independently and pass the results to the project lead.

As the project lead in this scenario, follow these steps to prepare the top-level design
for a successful team-based design methodology with early floorplan planning:

1. Create a new Intel Quartus Prime project that will ultimately contain the full
implementation of the entire design.

2. Create a “skeleton” or framework of the design that defines the hierarchy for the
subdesigns that will be implemented by separate designers. Consider the
partitioning guidelines in this manual when determining the design hierarchy.

3. Make project-wide settings. Select the device, make global assignments for clocks
and device I/0 ports, and make any global signal constraints to specify which
signals can use global routing resources.

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

117

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

intel.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments
683283 | 2018.09.24

Make design partition assignments for each major subdesign. Set the netlist type
for each partition that will be implemented in a separate Intel Quartus Prime
project and later exported and integrated with the top-level design set to Empty.

Create LogicLock regions for each partition to create a design floorplan. This
floorplan should consider the connectivity between partitions and estimates of the
size of each partition based on any initial implementation numbers and knowledge
of the design specifications. Use the guidelines described in this chapter to choose
a size and location for each LogicLock region.

Provide the constraints from the top-level design to partition designers using one
of the following procedures:

a. Create a copy of the top-level Intel Quartus Prime project framework by
checking out the appropriate files from a source control system, using the
Copy Project command, or creating a project archive. Provide each partition
designer with the copy of the project.

b. Provide the constraints with documentation or scripts.

2.12. Document Revision History

Table 7. Document Revision History
Date Version Changes

2015.11.02 15.1.0 Changed instances of Quartus II to Intel Quartus Prime.

2015.05.04 15.0.0 Removed support for early timing estimate feature.

2014.12.15 14.1.0 e Updated location of Fitter Settings, Analysis & Synthesis Settings, and Physical
Optimization Settings to Compiler Settings.

e Updated description of Virtual Pin assingment to clarify that assigned pins are no longer

free as input pins.

June 2014 14.0.0 e Dita conversion.

e Removed obsolete devices content for Arria GX, Cyclone, Cyclone II, Cyclone III, Stratix,
Stratix GX, Stratix II, Stratix II GX,

e Replace Megafunction content with IP Catalog and Parameter Editor content.

November 2013 13.1.0 Removed HardCopy device information.

November 2012 12.1.0 Added Turning On Supported Cross-Boundary Optimizations.
June 2012 12.0.0 Removed survey link.

November 2011 11.0.1 Template update.

May 2011 11.0.0 Updated links.

December 2010 10.1.0 e Changed to new document template.

e Moved "Creating Floorplan Location Assignments With Tcl Commands—Excluding or
Filtering Certain Device Elements (Such as RAM or DSP Blocks)" from the Intel Quartus
Prime Incremental Compilation for Hierarchical and Team-Based Design chapter in volume
1 of the Intel Quartus Prime Handbook.

e Consolidated Design Partition Planner and Incremental Compilation Advisor information
between the Intel Quartus Prime Incremental Compilation for Hierarchical and Team-
Based Design and Best Practices for Incremental Compilation Partitions and Floorplan
Assignments handbook chapters.

continued...

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

118

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments I n t e I
®

683283 | 2018.09.24

Date Version Changes

July 2010 10.0.0 Removed the explanation of the “bottom-up design flow” where designers work
completely independently, and replaced with Altera’s recommendations for team-based
environments where partitions are developed in the same top-level project framework,
plus an explanation of the bottom-up process for including independent partitions from
third-party IP designers.

Expanded the Merge command explanation to explain how it now accommodates cross-
partition boundary optimizations.
Restructured Altera recommendations for when to use a floorplan.

October 2009 9.1.0 Redefined the bottom-up design flow as team-based and reorganized previous design flow
examples to include steps on how to pass top-level design information to lower-level
projects.

Added "Including SDC Constraints from Lower-Level Partitions for Third-Party IP Delivery"
from the Intel Quartus Prime Incremental Compilation for Hierarchical and Team-Based
Design chapter in volume 1 of the Intel Quartus Prime Handbook.

Reorganized the "Recommended Design Flows and Application Examples" section.
Removed HardCopy APEX and HardCopy Stratix Devices section.

March 2009 9.0.0 Added 1/0 register packing examples from Incremental Compilation for Hierarchical and
Team-Based Designs chapter
Moved "Incremental Compilation Advisor" section
Added "Viewing Design Partition Planner and Floorplan Side-by-Side" section
Updated Figure 15-22
Chapter 8 was previously Chapter 7 in software release 8.1.

November 2008 8.1.0 Changed to 8-1/2 x 11 page size. No change to content.

May 2007 8.0.0 Initial release.

Related Information

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

D Send Feedback

Intel Quartus Prime Standard Edition User Guide: Design Compilation

119

https://www.altera.com/search-archives
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

683283 | 2018.09.24 I t I
D Send Feedback I l e R

3. Intel Quartus Prime Integrated Synthesis

As programmable logic designs become more complex and require increased
performance, advanced synthesis becomes an important part of a design flow. The
Altera® Quartus® II software includes advanced Integrated Synthesis that fully
supports VHDL, Verilog HDL, and Altera-specific design entry languages, and provides
options to control the synthesis process. With this synthesis support, the Intel Quartus
Prime software provides a complete, easy-to-use solution.

Related Information

Designing With Low-Level Primitives User Guide
For more information about coding with primitives that describe specific low-level
functions in Altera devices

3.1. Design Flow

The Intel Quartus Prime Analysis & Synthesis stage of the compilation flow runs
Integrated Synthesis, which fully supports Verilog HDL, VHDL, and Altera-specific
languages, and major features of the SystemVerilog language.

In the synthesis stage of the compilation flow, the Intel Quartus Prime software
performs logic synthesis to optimize design logic and performs technology mapping to
implement the design logic in device resources such as logic elements (LEs) or
adaptive logic modules (ALMs), and other dedicated logic blocks. The synthesis stage
generates a single project database that integrates all your design files in a project
(including any netlists from third-party synthesis tools).

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel

Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any Iso
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the 9005":2015
application or use of any information, product, or service described herein except as expressly agreed to in Registered
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying

on any published information and before placing orders for products or services.

*QOther names and brands may be claimed as the property of others.

http://www.altera.com/literature/ug/ug_low_level.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

3. Intel Quartus Prime Integrated Synthesis
683283 | 2018.09.24 °
You can use Analysis & Synthesis to perform the following compilation processes:

Table 8. Compilation Process

Compilation Process Description

Analyze Current File Parses your current design source file to check for syntax
errors. This command does not report many semantic errors
that require further design synthesis. To perform this
analysis, on the Processing menu, click Analyze Current
File.

Analysis & Elaboration Checks your design for syntax and semantic errors and
performs elaboration to identify your design hierarchy. To
perform Analysis & Elaboration, on the Processing menu,
point to Start, and then click Start Analysis &
Elaboration.

Hierarchy Elaboration Parses HDL designs and generates a skeleton of hierarchies.
Hierarchy Elaboration is similar to the Analysis & Elaboration
flow, but without any elaborated logic, thus making it much
faster to generate.

Analysis & Synthesis Performs complete Analysis & Synthesis on a design,
including technology mapping. To perform Analysis &
Synthesis, on the Processing menu, point to Start, and then
click Start Analysis & Synthesis.

Related Information

Language Support on page 123

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

121

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
® 683283 | 2018.09.24

3.1.1. Intel Quartus Prime Integrated Synthesis Design and Compilation
Flow

Figure 33. Basic Design Flow Using Intel Quartus Prime Integrated Synthesis

Altera
Quartus Prime Hardware Altera
Exported Description_schematic
Partition File Lan ua e Block Design
System Verilog (.qxp) Verilog HDL VHDL File (.bd
Functional/RTL
Simulation
—| Constraints | —— .) 4 Gate-Level
: Analysis & Synthesis Functional
& Settings Simulation
Post Synthesis
Internal Simulation File
Synthesis (vho/.vo)
Netlist
Constraints ; Timing 4
& Settings Fitter —— Assembler Analyzer Gatfumgltﬂnm'"g
Post
Placement and Routing
Simulation Files

(.vho/.vo and .sdo)

No Timing & Area Formal Verification
Requirements Using Source Code as
Satisfied? Golden Netlist, and VO
Placement and Routing as Revised Netlist
Formal \(Iem; ication File
Vo

Yes

Configure/Program Device

Configuration/
Programming
Files (.sof/.pof)

The Intel Quartus Prime Integrated Synthesis design and compilation flow consists of
the following steps:

1. Create a project in the Intel Quartus Prime software and specify the general
project information, including the top-level design entity name.

Create design files in the Intel Quartus Prime software or with a text editor.

On the Project menu, click Add/Remove Files in Project and add all design files
to your Intel Quartus Prime project using the Files page of the Settings dialog
box.

4. Specify Compiler settings that control the compilation and optimization of your
design during synthesis and fitting.

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

122

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
683283 | 2018.09.24 ®

Add timing constraints to specify the timing requirements.

6. Compile your design. To synthesize your design, on the Processing menu, point to
Start, and then click Start Analysis & Synthesis. To run a complete compilation
flow including placement, routing, creation of a programming file, and timing
analysis, click Start Compilation on the Processing menu.

7. After obtaining synthesis and placement and routing results that meet your
requirements, program or configure your Altera device.

Integrated Synthesis generates netlists that enable you to perform functional
simulation or gate-level timing simulation, timing analysis, and formal verification.

Related Information

e Intel Quartus Prime Synthesis Options on page 139
For more information about synthesis settings

e Incremental Compilation on page 137
For more information about partitioning your design to reduce compilation time

e Intel Quartus Prime Exported Partition File as Source on page 138
For more information about using .qxp as a design source file

e Introduction to the Intel Quartus Prime Software
For an overall summary of features in the Intel Quartus Prime software

3.1.1.1. Factors Affecting Compilation Results

Almost any change to the following project settings, hardware, or software can impact
the results from one compilation to the next.

* Project Files—changes to project settings (.qs¥, quartus2.ini), design files,
and timing constraints (.sdc) can change the results.

e Any setting that changes the number of processors during compilation can impact
compilation results.

e Hardware—CPU architecture, not including hard disk or memory size differences.
Windows XP x32 results are not identical to Windows XP x64 results. Linux x86
results is not identical to Linux x86_64.

e Intel Quartus Prime Software Version—including build number and installed
interim updates. Click Help > About to obtain this information.

e Operating System—Windows or Linux operating system, excluding version
updates. For example, Windows XP, Windows Vista, and Windows 7 results are
identical. Similarly, Linux RHEL, CentOS 4, and CentOS 5 results are identical.

3.2. Language Support

Intel Quartus Prime Integrated Synthesis supports HDL. You can specify the Verilog
HDL or VHDL language version in your design.

To ensure that the Intel Quartus Prime software reads all associated project files, add
each file to your Intel Quartus Prime project by clicking Add/Remove Files in
Project on the Project menu. You can add design files to your project. You can mix all
supported languages and netlists generated by third-party synthesis tools in a single
Intel Quartus Prime project.

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

123

http://www.altera.com/literature/manual/intro_to_quartus2.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
® 683283 | 2018.09.24

Related Information

e Design Libraries on page 130
Describes how to compile and reference design units in custom libraries

e Using Parameters/Generics on page 133
Describes how to use parameters or generics and pass them between
languages

3.2.1. Verilog and SystemVerilog Synthesis Support

Intel Quartus Prime synthesis supports the following Verilog HDL language standards:
e \Verilog-1995 (IEEE Standard 1364-1995)

e \Verilog-2001 (IEEE Standard 1364-2001)

e SystemVerilog-2005 (IEEE Standard 1800-2005)

The following important guidelines apply to Intel Quartus Prime synthesis of Verilog
HDL and SystemVerilog:

e The Compiler uses the Verilog-2001 standard by default for files with an extension
of .v, and the SystemVerilog standard for files with the extension of .sv.

e If you use scripts to add design files, you can use the -HDL_VERSION command
to specify the HDL version for each design file.

e Compiler support for Verilog HDL is case sensitive in accordance with the Verilog
HDL standard.

e The Compiler supports the compiler directive ~define, in accordance with the
Verilog HDL standard.

e The Compiler supports the include compiler directive to include files with
absolute paths (with either “*/” or “\" as the separator), or relative paths.

e When searching for a relative path, the Compiler initially searches relative to the
project directory. If the Compiler cannot find the file, the Compiler next searches
relative to all user libraries. Finally, the Compiler searches relative to the current
file's directory location.

3.2.1.1. Verilog HDL Configuration

Verilog HDL configuration is a set of rules that specify the source code for particular
instances. Verilog HDL configuration allows you to perform the following tasks:

e Specify a library search order for resolving cell instances (as does a library
mapping file).

e Specify overrides to the logical library search order for specified instances.
e Specify overrides to the logical library search order for all instances of specified
cells.

3.2.1.1.1. Configuration Syntax

A Verilog HDL configuration contains the following statements:
config config_identifier;
design [library_identifier.]cell_identifier;

config_rule_statement;
endconfig

Intel Quartus Prime Standard Edition User Guide: Design Compilation D Send Feedback

124

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

683283 | 2018.09.24

3. Intel Quartus Prime Integrated Synthesis I n t e I
®

config—the keyword that begins the configuration.
config_identifier—the name you enter for the configuration.

design—the keyword that starts a design statement for specifying the top of the
design.

[library_identifier.]cell_identifier—specifies the top-level module
(or top-level modules) in the design and the logical library for this module
(modules).

config_rule_statement—one or more of the following clauses: default,
instance, or cell. For more information, refer to Table 9 on page 125.

endconfig—the keyword that ends a configuration.

Table 9. Type of Clauses for the config_rule_statement Keyword
Clause Type Description
default Specifies the logical libraries to search to resolve a default cell instance. A default cell instance is an instance
in the design that is not specified in a subsequent instance or cell clause in the configuration.
You specify these libraries with the 1iblist keyword. The following is an example of a default clause:
default liblist libl lib2;
Also specifies resolving default instances in the logical libraries (1ib1l and 1ib2).
Because libraries are inherited, some simulators (for example, VCS) also search the default (or current)
library as well after the searching the logical libraries (Iibl and 1ib2).
instance Specifies a specific instance. The specified instance clause depends on the use of the following keywords:
— liblist—specifies the logical libraries to search to resolve the instance.
— use—specifies that the instance is an instance of the specified cell in the specified logical library.
The following are examples of instance clauses:
instance top.devl liblist libl lib2;
This instance clause specifies to resolve instance top.devl with the cells assigned to logical libraries
libl and lib2;
instance top.devl.gml use lib2.gizmult;
This instance clause specifies that top.devl.gml is an instance of the cell named gizmult in logical
library lib2.
cell A cell clause is similar to an instance clause, except that the cell clause specifies all instances of a cell
definition instead of specifying a particular instance. What it specifies depends on the use of the liblist or
use keywords:
— liblist—specifies the logical libraries to search to resolve all instances of the cell.
— use—the specified cell’s definition is in the specified library.

3.2.1.1.2. Hierarchical Design Configurations

A design can have more than one configuration. For example, you can define a
configuration that specifies the source code you use in particular instances in a sub-
hierarchy, and then define a configuration for a higher level of the design.

D Send Feedback

Intel Quartus Prime Standard Edition User Guide: Design Compilation

125

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
® 683283 | 2018.09.24

Example 12.

Example 13.

For example, suppose a subhierarchy of a design is an eight-bit adder, and the RTL
Verilog code describes the adder in a logical library named rtllib. The gate-level
code describes the adder in the gatel ib logical library. If you want to use the gate-
level code for the 0 (zero) bit of the adder and the RTL level code for the other seven
bits, the configuration might appear as follows:

Gate-level code for the 0 (zero) bit of the adder

config cfgl;

design aLib.eight_adder;

default liblist rtllib;

instance adder.fulladdO liblist gatelib;
endconfig

If you are instantiating this eight-bit adder eight times to create a 64-bit adder, use
configuration cfgl for the first instance of the eight-bit adder, but not in any other
instance. A configuration that performs this function is shown below:

Use configuration cf g1 for first instance of eight-bit adder

config cfg2;

design bLib.64_adder;

default liblist bLib;

instance top.64add0 use work.cfgl:config;

endconfig

Note: The name of the unbound module may be different from the name of the cell that is
bounded to the instance.

3.2.1.1.3. Suffix :config

To distinguish between a module by the same name, use the optional

extension :config to refer to configuration names. For example, you can always
refer to a cfg2 configuration as cfg2:config (even if the cfg2 module does not
exist).

3.2.1.2. SystemVerilog Support

Note:

The Intel Quartus Prime software supports the SystemVerilog constructs.

Designs written to support the Verilog-2001 standard might not compile with the
SystemVerilog setting because the SystemVerilog standard has several new reserved
keywords.

3.2.1.3. Initial Constructs and Memory System Tasks

The Intel Quartus Prime software infers power-up conditions from the Verilog HDL
initial constructs. The Intel Quartus Prime software also creates power-up settings
for variables, including RAM blocks. If the Intel Quartus Prime software encounters
non-synthesizable constructs in an initial block, it generates an error.

To avoid such errors, enclose non-synthesizable constructs (such as those intended
only for simulation) in translate off and translate_on synthesis directives.
Synthesis of initial constructs enables the power-up state of the synthesized design to
match the power-up state of the original HDL code in simulation.

Intel Quartus Prime Standard Edition User Guide: Design Compilation D Send Feedback

126

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
683283 | 2018.09.24 ®

Note: Initial blocks do not infer power-up conditions in some third-party EDA synthesis tools.
If you convert between synthesis tools, you must set your power-up conditions
correctly.

Intel Quartus Prime synthesis supports the $readmemb and $readmemh system tasks
to initialize memories.

Example 14. Verilog HDL Code: Initializing RAM with the readmemb Command
reg [7:0] ram[0:15];
initial
begin
$readmemb(*'ram.txt"”, ram);
end

When creating a text file to use for memory initialization, specify the address using
the format @</ocation> on a new line, and then specify the memory word such as
110101 or abcde on the next line.

The following example shows a portion of a Memory Initialization File (.mif) for the
RAM.

Example 15. Text File Format: Initializing RAM with the readmemb Command
@0
00000000
@1
00000001
@2
00000010

@e
00001110
af
00001111
3.2.1.4. Verilog HDL Macros

The Intel Quartus Prime software fully supports Verilog HDL macros, which you can
define with the "define compiler directive in your source code. You can also define
macros in the Intel Quartus Prime software or on the command line.

To set Verilog HDL macros at the command line for the Intel Quartus Prime Pro Edition
synthesis (quartus_syn) executable, use the following format:

quartus_syn <PRQIECT_NAME> --set=VERILOG_MACRO=a=2

This command adds the following new line to the project .qsfF file:

set_global_assignment -name VERILOG_MACRO "a=2"

To avoid adding this line to the project .qgs¥, add this option to the quartus_syn
command:

--write_settings_files=off

3.2.1.4.1. Setting a Verilog HDL Macro Default Value in the Intel Quartus Prime Software

To specify a macro in the Intel Quartus Prime software, follow these steps:

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

127

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
® 683283 | 2018.09.24

Click Assignments [0 Settings [0 Compiler Settings 0 Verilog HDL Input

2. Under Verilog HDL macro, type the macro name in the Name box and the value
in the Setting box.

3. Click Add.

3.2.1.4.2. Setting a Verilog HDL Macro Default Value on the Command Line

To set a default value for a Verilog HDL macro on the command line, use the —-
verilog_macro option:

quartus_map <Desi gn nane> --verilog_macro= "<Macro nanme>=<Macro setting>"

The command in this example has the same effect as specifying
“define a 2 in the Verilog HDL source code:

quartus_map my_design --verilog_macro="a=2"

To specify multiple macros, you can repeat the option more than once.

quartus_map my_design --verilog_macro="a=2" --verilog_macro="hb=3"

3.2.2. VHDL Synthesis Support

Note:

Intel Quartus Prime synthesis supports the following VHDL language standards.
e VHDL 1987 (IEEE Standard 1076-1987)
e VHDL 1993 (IEEE Standard 1076-1993)
e VHDL 2008 (IEEE Standard 1076-2008)

The Intel Quartus Prime Compiler uses the VHDL 1993 standard by default for files
that have the extension .vhdl or .vhd.

The VHDL code samples follow the VHDL 1993 standard.

3.2.2.1. VHDL Standard Libraries and Packages

The Intel Quartus Prime software includes the standard IEEE libraries and several
vendor-specific VHDL libraries. The IEEE library includes the standard VHDL packages
std _logic_1164, numeric_std, numeric_bit, and math_real.

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

128

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
683283 | 2018.09.24 ®

The STD library is part of the VHDL language standard and includes the packages
standard (included in every project by default) and textio. For compatibility with
older designs, the Intel Quartus Prime software also supports the following vendor-
specific packages and libraries:

e Synopsys* packages such as std_logic_arith and std_logic_unsigned in
the IEEE library.

e Mentor Graphics* packages such as std_logic_arith in the ARITHMETIC
library.

e Primitive packages altera_primitives_components (for primitives such as
GLOBAL and DFFE) and maxplus2 in the ALTERA library.

e [P core packages altera_mf_components in the ALTERA_MF library for specific
IP cores including LCELL. In addition, 1pm_components in the LPM library for
library of parameterized modules (LPM) functions.

Note: Import component declarations for primitives such as GLOBAL and DFFE from the

altera_primitives_components package and not the altera_mf_components
package.

3.2.2.2. VHDL wait Constructs

The Intel Quartus Prime software supports one VHDL wait until statement per
process block. However, the Intel Quartus Prime software does not support other
VHDL wait constructs, such as wait for and wait on statements, or processes with
multiple wait statements.

Example 16. VHDL wait until| construct example

architecture dff_arch of Is_dff is
begin

output: process begin

wait until (CLK"event and CLK="1%);
Q <= D;

Qbar <= not D;

end process output;

end dff_arch;

3.2.3. AHDL Support

The Intel Quartus Prime Compiler’s Analysis & Synthesis module fully supports the
Altera Hardware Description Language (AHDL).

AHDL designs use Text Design Files (.tdf). You can import AHDL Include Files (.inc)
into a .tdf with an AHDL include statement. Altera provides .inc files for all IP cores
shipped with the Intel Quartus Prime software.

Note: The AHDL language does not support the synthesis directives or attributes.

3.2.4. Schematic Design Entry Support

The Intel Quartus Prime Compiler’s Analysis & Synthesis module fully supports .bdf
for schematic design entry.

Note: Schematic entry methods do not support the synthesis directives or attributes.

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

129

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
® 683283 | 2018.09.24

3.2.5. State Machine Editor
The software supports graphical state machine entry. To create a new finite state
machine (FSM) design:
1. Click File O New.

2. In the New dialog box, expand the Design Files list, and then select State
Machine File.

3.2.6. Design Libraries
By default, the Compiler processes all design files into one or more libraries.

e When compiling a design instance, the Compiler initially searches for the entity in
the library associated with the instance (which is the work library if you do not
specify any library).

e If the Compiler cannot locate the entity definition, the Compiler searches for a
unique entity definition in all design libraries.

e If the Compiler finds more than one entity with the same name, the Compiler
generates an error. If your design uses multiple entities with the same name, you
must compile the entities into separate libraries.

Note: If you do not specify a design library, if a file refers to a library that does not exist, or
if the referenced library does not contain a referenced design unit, the Intel Quartus
Prime software searches the work library. This behavior allows the Intel Quartus Prime
software to compile most designs with minimal setup, but you have the option of
creating separate custom design libraries.
Related Information

Mapping a VHDL Instance to an Entity in a Specific Library on page 131

3.2.6.1. Specifying a Destination Library Name in the Settings Dialog Box

To specify a library name for one of your design files, follow these steps:
On the Assignments menu, click Settings.

In the Category list, select Files.

Select the file in the File Name list.

Click Properties.

u »h W N

In the File Properties dialog box, select the type of design file from the Type
list.

Type the library name in the Library field.
Click OK.

o

3.2.6.2. Specifying a Destination Library Name in the Intel Quartus Prime
Settings File or with Tcl

You can specify the library name with the —-1ibrary option to the
<language type>_FILE assignment in the Intel Quartus Prime Settings File (.qsf) or
with Tcl commands.

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

130

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
683283 | 2018.09.24 ®

For example, the following assignments specify that the Intel Quartus Prime software
analyzes the my_file.vhd and stores its contents (design units) in the VHDL library
my_lib, and then analyzes the Verilog HDL file my_header_file.h and stores its
contents in a library called another_lib.

set_global_assignment —name VHDL_FILE my_ file.vhd —library my_lib
set_global_assignment —name VERILOG_FILE my_header_file.h —library another_lib

Related Information

Scripting Support on page 190
For more information about Tcl scripting

3.2.6.3. Specifying a Destination Library Name in a VHDL File

You can use the library synthesis directive to specify a library name in your VHDL
source file. This directive takes the name of the destination library as a single string
argument. Specify the library directive in a VHDL comment before the context
clause for a primary design unit (that is, a package declaration, an entity declaration,
or a configuration), with one of the supported keywords for synthesis directives, that
is, altera, synthesis, pragma, synopsys, or exemplar.

The library directive overrides the default library destination work, the library
setting specified for the current file in the Settings dialog box, any existing .qsf
setting, any setting made through the Tcl interface, or any prior library directive in
the current file. The directive remains effective until the end of the file or the next
library synthesis directive.

The following example uses the library synthesis directive to create a library called
my_lib containing the my_entity design unit:

-- synthesis library my_lib

library ieee;

use ieee.std_logic_1164.all;

entity my entity(...)

end entity my_entity;

Note: You can specify a single destination library for all your design units in a given source
file by specifying the library name in the Settings dialog box, editing the .qsf, or
using the Tcl interface. To organize your design units in a single file into different
libraries rather than just a single library, you can use the library directive to change
the destination VHDL library in a source file.

The Intel Quartus Prime software generates an error if you use the library directive in
a design unit.

Related Information

Synthesis Directives on page 142
For more information about specifying synthesis directives

3.2.6.4. Mapping a VHDL Instance to an Entity in a Specific Library

The VHDL language provides several ways to map or bind an instance to an entity in a
specific library.

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

131

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
® 683283 | 2018.09.24

3.2.6.4.1. Direct Entity Instantiation

In the direct entity instantiation method, the instantiation refers to an entity in a
specific library.

The following shows the direct entity instantiation method for VHDL:

entity entityl is

port(...);

end entity entityl;
architecture arch of entityl is
begin

inst: entity libl.foo

port map(--.);

end architecture arch;

3.2.6.4.2. Component Instantiation—Explicit Binding Instantiation

You can bind a component to an entity in several mechanisms. In an explicit binding
indication, you bind a component instance to a specific entity.

The following shows the binding instantiation method for VHDL.:

entity entityl is

port(...);

end entity entityl;

package components is

component entityl is

port map (---);

end component entityl;

end package components;

entity top_entity is

port(...);

end entity top_entity;

use libl.components.all;

architecture arch of top_entity is

-- Explicitly bind instance 11 to entityl from libl
for 11: entityl use entity libl.entityl
port map(--.);

end for;

begin

11: entityl port map(--.);

end architecture arch;

3.2.6.4.3. Component Instantiation—Default Binding

Example 17.

If you do not provide an explicit binding indication, the Intel Quartus Prime software
binds a component instance to the nearest visible entity with the same name. If no
such entity is visible in the current scope, the Intel Quartus Prime software binds the
instance to the entity in the library in which you declare the component. For example,
if you declare the component in a package in the MY_LIB library, an instance of the
component binds to the entity in the MY_LIB library.

The code examples in the following examples show this instantiation method:

VHDL Code: Default Binding to the Entity in the Same Library as the
Component Declaration

use mylib.pkg.foo; -- import component declaration from package “pkg” in

-- library “mylib”
architecture rtl of top

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

132

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
683283 | 2018.09.24 ®

begin
-- This instance will be bound to entity “foo” in library “mylib”
inst: foo

port map(...);
end architecture rtl;

Example 18. VHDL Code: Default Binding to the Directly Visible Entity

use mylib.foo; -- make entity “foo” in library “mylib” directly visible
architecture rtl of top

component foo is

generic (...)

port (...);

end component;

begin

-- This instance will be bound to entity “foo” in library “mylib”
inst: foo

port map(--.);

end architecture rtl;

3.2.7. Using Parameters/Generics

The Intel Quartus Prime software supports parameters (known as generics in VHDL)
and you can pass these parameters between design languages.

Click Assignments 0 Settings 0 Compiler Settings [Default Parameters to
enter default parameter values for your design. In AHDL, the Intel Quartus Prime
software inherits parameters, so any default parameters apply to all AHDL instances in
your design. You can also specify parameters for instantiated modules in a .bdf. To
specify parameters in a .bdf instance, double-click the parameter value box for the
instance symbol, or right-click the symbol and click Properties, and then click the
Parameters tab.

You can specify parameters for instantiated modules in your design source files with
the provided syntax for your chosen language. Some designs instantiate entities in a
different language; for example, they might instantiate a VHDL entity from a Verilog
HDL design file. You can pass parameters or generics between VHDL, Verilog HDL,
AHDL, and BDF schematic entry, and from EDIF or VQM to any of these languages.
You do not require an additional procedure to pass parameters from one language to
another. However, sometimes you must specify the type of parameter you are passing.
In those cases, you must follow certain guidelines to ensure that the Intel Quartus
Prime software correctly interprets the parameter value.

Related Information

e Setting Default Parameter Values and BDF Instance Parameter Values on page 133
For more information about the GUI-based entry methods, the interpretation of
parameter values, and format recommendations

e Passing Parameters Between Two Design Languages on page 135
For more information about parameter type rules

3.2.7.1. Setting Default Parameter Values and BDF Instance Parameter Values

Default parameter values and BDF instance parameter values do not have an explicitly
declared type. Usually, the Intel Quartus Prime software can correctly infer the type
from the value without ambiguity. For example, the Intel Quartus Prime software
interprets "ABC” as a string, 123 as an integer, and 15.4 as a floating-point value. In
other cases, such as when the instantiated subdesign language is VHDL, the Intel

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

133

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

intel.

3. Intel Quartus Prime Integrated Synthesis
683283 | 2018.09.24

Quartus Prime software uses the type of the parameter, generic, or both in the
instantiated entity to determine how to interpret the value, so that the Intel Quartus
Prime software interprets a value of 123 as a string if the VHDL parameter is of a type
string. In addition, you can set the parameter value in a format that is legal in the
language of the instantiated entity. For example, to pass an unsized bit literal value
from .bdf to Verilog HDL, you can use "1 as the parameter value, and to pass a 4-bit
binary vector from .bdf to Verilog HDL, you can use 4*b1111 as the parameter value.

In a few cases, the Intel Quartus Prime software cannot infer the correct type of
parameter value. To avoid ambiguity, specify the parameter value in a type-encoded
format in which the first or first and second characters of the parameter indicate the
type of the parameter, and the rest of the string indicates the value in a quoted sub-
string. For example, to pass a binary string 1001 from .bdf to Verilog HDL, you
cannot use the value 1001, because the Intel Quartus Prime software interprets it as a
decimal value. You also cannot use the string ""1001" because the Intel Quartus Prime
software interprets it as an ASCII string. You must use the type-encoded string
B"*1001" for the Intel Quartus Prime software to correctly interpret the parameter

value.

This table lists valid parameter strings and how the Intel Quartus Prime software
interprets the parameter strings. Use the type-encoded format only when necessary to

resolve ambiguity.

Table 10. Valid Parameter Strings and Interpretations

Parameter String

Intel Quartus Prime Parameter Type, Format, and
Value

S"abc", s"abc"

String value abc

"abc123", ""123abc™

String value abc123 or 123abc

F12.3", ¥'12.3"

Floating point number 12.3

-5.4

Floating point number -5.4

D"123", d"123"

Decimal number 123

123, -123 Decimal number 123, -123
XFE, HFF Hexadecimal value FF
Q77 07T Octal value 77

B'*1010", b*'1010"

Unsigned binary value 1010

SB"1010", sb*'1010"

Signed binary value 1010

R"1", R™O", R"X™, R"Z", r"1", r"0", r''xX", r'z"

Unsized bit literal

E"apple”, e"apple"

Enumeration type, value name is apple

P"1 unit"

Physical literal, the value is (1, unit)

AC--2)al--2)

Array type or record type. The string (...) determines the
array type or record type content

You can select the parameter type for global parameters or global constants with the
pull-down list in the Parameter tab of the Symbol Properties dialog box. If you do
not specify the parameter type, the Intel Quartus Prime software interprets the
parameter value and defines the parameter type. You must specify parameter type

with the pull-down list to avoid ambiguity.

Intel Quartus Prime Standard Edition User Guide: Design Compilation

134

D Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
683283 | 2018.09.24 ®

Note: If you open a .bdf in the Intel Quartus Prime software, the software automatically
updates the parameter types of old symbol blocks by interpreting the parameter value
based on the language-independent format. If the Intel Quartus Prime software does
not recognize the parameter value type, the software sets the parameter type as
untyped.

The Intel Quartus Prime software supports the following parameter types:
e Unsigned Integer

e Signed Integer

e Unsigned Binary

e Signed Binary

e Octal

¢ Hexadecimal

¢ Float
e Enum
e String

e Boolean
e Char
e Untyped/Auto

3.2.7.2. Passing Parameters Between Two Desigh Languages

When passing a parameter between two different languages, a design block that is
higher in the design hierarchy instantiates a lower-level subdesign block and provides
parameter information. The subdesign language (the design entity that you
instantiate) must correctly interpret the parameter. Based on the information provided
by the higher-level design and the value format, and sometimes by the parameter
type of the subdesign entity, the Intel Quartus Prime software interprets the type and
value of the passed parameter.

When passing a parameter whose value is an enumerated type value or literal from a
language that does not support enumerated types to one that does (for example, from
Verilog HDL to VHDL), you must ensure that the enumeration literal is in the correct
spelling in the language of the higher-level design block (block that is higher in the
hierarchy). The Intel Quartus Prime software passes the parameter value as a string
literal, and the language of the lower-level design correctly convert the string literal
into the correct enumeration literal.

If the language of the lower-level entity is SystemVerilog, you must ensure that the
enum value is in the correct case. In SystemVerilog, two enumeration literals differ in
more than just case. For example, enum {item, ITEM} is not a good choice of item
names because these names can create confusion and is more difficult to pass
parameters from case-insensitive HDLs, such as VHDL.

Arrays have different support in different design languages. For details about the array
parameter format, refer to the Parameter section in the Analysis & Synthesis Report
of a design that contains array parameters or generics.

The following code shows examples of passing parameters from one design entry
language to a subdesign written in another language.

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

135

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
® 683283 | 2018.09.24

Table 11. VHDL Parameterized Subdesign Entity

This table shows a VHDL subdesign that you instantiate in a top-level Verilog HDL design in Table 12 on page
136.

HDL Code

VHDL type fruit is (apple, orange, grape);

entity vhdl_sub is

generic (

name : string := "default"”,

width : integer := 8,

number_string : string := 123",

f : fruit := apple,

binary_vector : std_logic_vector(3 downto 0) := "0101",
signed_vector : signed (3 downto 0) := "1111");

Table 12. Verilog HDL Top-Level Design Instantiating and Passing Parameters to VHDL
Entity

This table shows a Verilog HDL Top-Level Design Instantiating and Passing Parameters to VHDL Entity from
Table 11 on page 136.

HDL Code

Verilog HDL vhdl_sub inst (...);
defparam inst.name = "lower";
defparam inst.width = 3;
defparam inst.num_string = "321";
defparam inst.f = “grape™; // Must exactly match enum value
defparam inst.binary_vector = 4"b1010;
defparam inst.signed_vector = 4"sb1010;

Table 13. Verilog HDL Parameterized Subdesign Module
This table shows a Verilog HDL subdesign that you instantiate in a top-level VHDL design in Table 14 on page

136.
HDL Code
Verilog HDL module veri_sub (...)
parameter name = “default';
parameter width = 8;
parameter number_string = "123";

parameter binary_vector = 4%b0101;
parameter signed_vector = 4"sb1111;

Table 14. VHDL Top-Level Design Instantiating and Passing Parameters to the Verilog
HDL Module

This table shows a VHDL Top-Level Design Instantiating and Passing Parameters to the Verilog HDL Module
from Table 13 on page 136.

HDL Code

VHDL

inst:veri_sub

generic map (

name => "lower",

width => 3,
number_string => 321"
binary_vector = "1010"
signed_vector = "1010")

To use an HDL subdesign such as the one shown in Table 13 on page 136 in a top-
level .bdf design, you must generate a symbol for the HDL file, as shown in Figure 34
on page 137. Open the HDL file in the Intel Quartus Prime software, and then, on the
File menu, point to Create/Update, and then click Create Symbol Files for
Current File.

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

136

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
683283 | 2018.09.24

Figure 34.

intel.

To specify parameters on a .bdf instance, double-click the parameter value box for the
instance symbol, or right-click the symbol and click Properties, and then click the
Parameters tab. Right-click the symbol and click Update Design File from
Selected Block to pass the updated parameter to the HDL file.

BDF Top-Level Design Instantiating and Passing Parameters to the Verilog
HDL Module

This figure shows BDF Top-Level Design Instantiating and Passing Parameters to the Verilog HDL Module from
Table 13 on page 136

Parameter |Value Type
name clefault | String
wvickth 5 Signed Intecger

number_string 1123 [String
binary_vector |0101 [Unsigned Binary
signed_vector [1111 |Signed Binary

{ven_zub

—i o —

3.3. Incremental Compilation

Incremental compilation manages a design hierarchy for incremental design by
allowing you to divide your design into multiple partitions. Incremental compilation
ensures that the Intel Quartus Prime software resynthesizes only the updated
partitions of your design during compilation, to reduce the compilation time and the
runtime memory usage. The feature maintains node names during synthesis for all
registered and combinational nodes in unchanged partitions. You can perform
incremental synthesis by setting the netlist type for all design partitions to Post-
Synthesis.

You can also preserve the placement and routing information for unchanged partitions.
This feature allows you to preserve performance of unchanged blocks in your design
and reduces the time required for placement and routing, which significantly reduces
your design compilation time.

Related Information

Intel Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design
on page 7
For more information about incremental compilation for hierarchical and team-
based design

3.3.1. Partitions for Preserving Hierarchical Boundaries

D Send Feedback

A design partition represents a portion of your design that you want to synthesize and
fit incrementally.

If you want to preserve the Optimization Technique and Restructure
Multiplexers logic options in any entity, you must create new partitions for the entity
instead of using the Preserve Hierarchical Boundary logic option. If you have
settings applied to specific existing design hierarchies, particularly those created in the
Intel Quartus Prime software versions before 9.0, you must create a design partition
for the design hierarchy so that synthesis can optimize the design instance
independently and preserve the hierarchical boundaries.

Intel Quartus Prime Standard Edition User Guide: Design Compilation

137

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
® 683283 | 2018.09.24

Note:

The Preserve Hierarchical Boundary logic option is available only in Intel Quartus
Prime software versions 8.1 and earlier. Altera recommends using design partitions if
you want to preserve hierarchical boundaries through the synthesis and fitting
process, because incremental compilation maintains the hierarchical boundaries of
design partitions.

3.3.2. Parallel Synthesis

The Parallel Synthesis logic option reduces compilation time for synthesis. The
option enables the Intel Quartus Prime software to use multiple processors to
synthesize multiple partitions in parallel.

This option is available when you perform the following tasks:

e Specify the maximum number of processors allowed under Parallel Compilation
options in the Compilation Process Settings page of the Settings dialog box.

e Enable the incremental compilation feature.

e Use two or more partitions in your design.

e Turn on the Parallel Synthesis option.

By default, the Intel Quartus Prime software enables the Parallel Synthesis option.

To disable parallel synthesis, click Assignments [0 Settings [0 Compiler Settings U
Advanced Settings (Synthesis) 0 Parallel Synthesis.

You can also set the Parallel Synthesis option with the following Tcl command:

set_global_assignment -name parallel_synthesis off

If you use the command line, you can differentiate among the interleaved messages
by turning on the Show partition that generated the message option in the
Messages page. This option shows the partition ID in parenthesis for each message.

You can view all the interleaved messages from different partitions in the Messages
window. The Partition column in the Messages window displays the partition ID of the
partition referred to in the message. After compilation, you can sort the messages by
partition.

Related Information

About the Messages Window
For more information about displaying the Partition column

3.3.3. Intel Quartus Prime Exported Partition File as Source

You can use a .qxp as a source file in incremental compilation. The .qxp contains the
precompiled design netlist exported as a partition from another Intel Quartus Prime
project, and fully defines the entity. Project team members or intellectual property
(IP) providers can use a .qxp to send their design to the project lead, instead of
sending the original HDL source code. The .qxp preserves the compilation results and
instance-specific assignments. Not all global assignments can function in a different
Intel Quartus Prime project. You can override the assignments for the entity in

the .qxp by applying assignments in the top-level design.

Intel Quartus Prime Standard Edition User Guide: Design Compilation D Send Feedback

138

http://quartushelp.altera.com/current/index.htm#report/msw/msw_com_msw.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
683283 | 2018.09.24 ®

Related Information

e Intel Quartus Prime Exported Partition File .gxp
For more information about .qxp

e Intel Quartus Prime Incremental Compilation for Hierarchical and Team-Based
Design on page 7
For more information about exporting design partitions and using .qxp files

3.4. Intel Quartus Prime Synthesis Options

The Intel Quartus Prime software offers several options to help you control the
synthesis process and achieve optimal results for your design.

Note: When you apply a Intel Quartus Prime Synthesis option globally or to an entity, the
option affects all lower-level entities in the hierarchy path, including entities
instantiated with Altera and third-party IP.

Related Information

Setting Synthesis Options on page 139
Describes the Compiler Settings page of the Settings dialog box, in which you
can set the most common global settings and options, and defines the following
types of synthesis options: Intel Quartus Prime logic options, synthesis attributes,
and synthesis directives.

3.4.1. Setting Synthesis Options

You can set synthesis options in the Settings dialog box, or with logic options in the
Intel Quartus Prime software, or you can use synthesis attributes and directives in
your HDL source code.

The Compiler Settings page of the Settings dialog box allows you to set global
synthesis options that apply to the entire project. You can also use a corresponding Tcl
command.

You can set some of the advanced synthesis settings in the Advanced Settings
dialog box on the Compiler Settings page.

Related Information

Netlist Optimizations and Physical Synthesis
For more information about Physical Synthesis options

3.4.1.1. Intel Quartus Prime Logic Options

The Intel Quartus Prime logic options control many aspects of the synthesis and
placement and routing process. To set logic options in the Intel Quartus Prime
software, on the Assignments menu, click Assignment Editor. You can also use a
corresponding Tcl command to set global assignments. The Intel Quartus Prime logic
options enable you to set instance or node-specific assignments without editing the
source HDL code.

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

139

http://quartushelp.altera.com/current/index.htm#reference/glossary/def_qxp.htm
https://www.intel.com/content/www/us/en/docs/programmable/683230/current/netlist-optimizations-and-physical-synthesis-29493.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
® 683283 | 2018.09.24

3.4.1.2. Synthesis Attributes

Note:

Note:

The Intel Quartus Prime software supports synthesis attributes for Verilog HDL and
VHDL, also commonly called pragmas. These attributes are not standard Verilog HDL
or VHDL commands. Synthesis tools use attributes to control the synthesis process.
The Intel Quartus Prime software applies the attributes in the HDL source code, and
attributes always apply to a specific design element. Some synthesis attributes are
also available as Intel Quartus Prime logic options via the Intel Quartus Prime software
or scripting. Each attribute description indicates a corresponding setting or a logic
option that you can set in the Intel Quartus Prime software. You can specify only some
attributes with HDL synthesis attributes.

Attributes specified in your HDL code are not visible in the Assignment Editor or in
the .gqsf. Assighments or settings made with the Intel Quartus Prime software,

the .gsf, or the Tcl interface take precedence over assignments or settings made with
synthesis attributes in your HDL code. The Intel Quartus Prime software generates
warning messages if the software finds invalid attributes, but does not generate an
error or stop the compilation. This behavior is necessary because attributes are
specific to various design tools, and attributes not recognized in the Intel Quartus
Prime software might be for a different EDA tool. The Intel Quartus Prime software
lists the attributes specified in your HDL code in the Source assignments table of the
Analysis & Synthesis report.

The Verilog-2001, SystemVerilog, and VHDL language definitions provide specific
syntax for specifying attributes, but in Verilog-1995, you must embed attribute
assignments in comments. You can enter attributes in your code using the syntax in
Specifying Synthesis Attributes in Verilog-1995 on page 141 through Synthesis
Attributes in VHDL on page 142, in which <attribute>, <attribute type>, <value>,
<object>, and <object type> are variables, and the entry in brackets is optional.
These examples demonstrate each syntax form.

Verilog HDL is case sensitive; therefore, synthesis attributes in Verilog HDL files are
also case sensitive.

In addition to the synthesis keyword shown above, the Intel Quartus Prime software
supports the pragma, synopsys, and exemplar keywords for compatibility with
other synthesis tools. The software also supports the altera keyword, which allows
you to add synthesis attributes that the Intel Quartus Prime Integrated Synthesis
feature recognizes and not by other tools that recognize the same synthesis attribute.

Because formal verification tools do not recognize the exemplar, pragma, and
altera keywords, avoid using these attribute keywords when using formal
verification.

Related Information

e Maximum Fan-Out on page 159
For more information about maximum fan-out attribute

e Preserve Registers on page 154
For more information about preserve attribute

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

140

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
683283 | 2018.09.24 ®

3.4.1.2.1. Synthesis Attributes in Verilog-1995

You must use Verilog-1995 comment-embedded attributes as a suffix to the
declaration of an item and must appear before a semicolon, when a semicolon is
necessary.

Note: You cannot use the open one-line comment in Verilog HDL when a semicolon is
necessary after the line, because it is not clear to which HDL element that the
attribute applies. For example, you cannot make an attribute assignment such as
reg r; // synthesis <attribute> because the Intel Quartus Prime software
could read the attribute as part of the next line.

Specifying Synthesis Attributes in Verilog-1995

The following show an example of specifying synthesis attributes in Verilog-1995:
// synthesis <attribute> [= <val ue>]

or
/* synthesis <attribute> [= <value>] */

Applying Multiple Attributes to the Same Instance in Verilog-1995

To apply multiple attributes to the same instance in Verilog-1995, separate the
attributes with spaces.

//synthesis <attributel> [= <value>] <attribute2> [= <value>]
For example, to set the maxfan attribute to 16 and set the preserve attribute on a
register called my_reg, use the following syntax:

reg my_reg /* synthesis maxfan = 16 preserve */;

Related Information

e Maximum Fan-Out on page 159
For more information about maximum fan-out attribute

e Preserve Registers on page 154
For more information about preserve attribute

3.4.1.2.2, Synthesis Attributes in Verilog-2001

You must use Verilog-2001 attributes as a prefix to a declaration, module item,
statement, or port connection, and as a suffix to an operator or a Verilog HDL function
name in an expression.

Note: Formal verification does not support the Verilog-2001 attribute syntax because the
tools do not recognize the syntax.

Specifying Synthesis Attributes in Verilog-2001 and SystemVerilog

(* <attribute> [= <value>] *)

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

141

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
® 683283 | 2018.09.24

Applying Multiple Attributes

To apply multiple attributes to the same instance in Verilog-2001 or SystemVerilog,
separate the attributes with commas.

(* <attributel> [= <valuel>], <attribute2> [= <value2>] *)
For example, to set the maxfan attribute to 16 and set the preserve attribute on a
register called my_reg, use the following syntax:

(* maxfan = 16, preserve *) reg my_reg;

Related Information

e Maximum Fan-Out on page 159
For more information about maximum fan-out attribute

e Preserve Registers on page 154
For more information about preserve attribute

3.4.1.2.3. Synthesis Attributes in VHDL
VHDL attributes declare and apply the attribute type to the object you specify.
Synthesis Attributes in VHDL

The following shows the synthesis attributes example in VHDL:

attribute <attribute> : <attribute type> ;
attribute <attribute> of <object> : <object type> is <val ue>;

altera_syn_attributes

The Intel Quartus Prime software defines and applies each attribute separately to a
given node. For VHDL designs, the software declares all supported synthesis attributes
in the altera_syn_attributes package in the Altera library. You can call this
library from your VHDL code to declare the synthesis attributes:

LIBRARY altera;
USE altera.altera_syn_attributes.all;

3.4.1.3. Synthesis Directives

The Intel Quartus Prime software supports synthesis directives, also commonly called
compiler directives or pragmas. You can include synthesis directives in Verilog HDL or
VHDL code as comments. These directives are not standard Verilog HDL or VHDL
commands. Synthesis tools use directives to control the synthesis process. Directives
do not apply to a specific design node, but change the behavior of the synthesis tool
from the point in which they occur in the HDL source code. Other tools, such as
simulators, ignore these directives and treat them as comments.

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

142

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
683283 | 2018.09.24 ®

Table 15. Specifying Synthesis Directives

You can enter synthesis directives in your code using the syntax in the following table, in which <directive>
and <value> are variables, and the entry in brackets are optional. For synthesis directives, no equal sign
before the value is necessary; this is different than the Verilog syntax for synthesis attributes. The examples
demonstrate each syntax form.

Language Syntax Example
Verilog B ; :
// synthesis <directive> [<val ue>
HDL(®*) or y L 1

/* synthesis <directive> [<value>] */

VHDL -- synthesis <directive> [<val ue>]

VHDL-2008 /*

synthesis <directive> [<val ue>] */

In addition to the synthesis keyword shown above, the software supports the
pragma, synopsys, and exemplar keywords in Verilog HDL and VHDL for
compatibility with other synthesis tools. The Intel Quartus Prime software also
supports the keyword altera, which allows you to add synthesis directives that only
Intel Quartus Prime Integrated Synthesis feature recognizes, and not by other tools
that recognize the same synthesis directives.

Note: Because formal verification tools ignore the exemplar, pragma, and altera
keywords, Altera recommends that you avoid using these directive keywords when
you use formal verification to prevent mismatches with the Intel Quartus Prime
results.

3.4.2. Optimization Technique

The Optimization Technique logic option specifies the goal for logic optimization
during compilation; that is, whether to attempt to achieve maximum speed
performance or minimum area usage, or a balance between the two.

Related Information

Optimization Technique logic option
For more information about the Optimization Technique logic option

3.4.3. Auto Gated Clock Conversion

Clock gating is a common optimization technique in ASIC designs to minimize power
consumption. You can use the Auto Gated Clock Conversion logic option to optimize
your prototype ASIC designs by converting gated clocks into clock enables when you
use FPGAs in your ASIC prototyping. The automatic conversion of gated clocks to clock
enables is more efficient than manually modifying source code. The Auto Gated
Clock Conversion logic option automatically converts qualified gated clocks (base
clocks as defined in the Synopsys Design Constraints [SDC]) to clock enables. Click
AssignmentsSettingsCompiler SettingsAdvanced Settings (Synthesis) to
enable Auto Gated Clock Conversion.

(4) Verilog HDL is case sensitive; therefore, all synthesis directives are also case sensitive.

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

143

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_optimization_technique.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
® 683283 | 2018.09.24

The gated clock conversion occurs when all these conditions are met:
e Only one base clock drives a gated-clock

e For one set of gating input values, the value output of the gated clock remains
constant and does not change as the base clock changes

e For one value of the base clock, changes in the gating inputs do not change the
value output for the gated clock

The option supports combinational gates in clock gating network.

Figure 35. Example Gated Clock Conversion

ena ena
] [
ena — enal ena

enal J dk 4L

dk
ena ena
] [
ena enal ena
ena2
enal
dk
Note: This option does not support registers in RAM, DSP blocks, or I/O related WYSIWYG

primitives. Because the gated-clock conversion cannot trace the base clock from the
gated clock, the gated clock conversion does not support multiple design partitions
from incremental compilation in which the gated clock and base clock are not in the
same hierarchical partition. A gated clock tree, instead of every gated clock, is the
basis of each conversion. Therefore, if you cannot convert a gated clock from a root
gated clock of a multiple cascaded gated clock, the conversion of the entire gated
clock tree fails.

The Info tab in the Messages window lists all the converted gated clocks. You can
view a list of converted and nonconverted gated clocks from the Compilation Report
under the Optimization Results of the Analysis & Synthesis Report. The Gated
Clock Conversion Details table lists the reasons for nonconverted gated clocks.

Related Information

Auto Gated Clock Conversion logic option
For more information about Auto Gated Clock Conversion logic option and a list of
supported devices

Intel Quartus Prime Standard Edition User Guide: Design Compilation D Send Feedback

144

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_synth_gated_clock_conversion.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
683283 | 2018.09.24 ®

3.4.4. Enabling Timing-Driven Synthesis

Timing-driven synthesis directs the Compiler to account for your timing constraints
during synthesis. Timing-driven synthesis runs initial timing analysis to obtain netlist
timing information. Synthesis then focuses performance efforts on timing-critical
design elements, while optimizing non-timing-critical portions for area.

Timing-driven synthesis preserves timing constraints, and does not perform
optimizations that conflict with timing constraints. Timing-driven synthesis may
increase the number of required device resources. Specifically, the number of adaptive
look-up tables (ALUTs) and registers may increase. The overall area can increase or
decrease. Runtime and peak memory use increases slightly.

Timing-Driven Synthesis prevents registers with incompatible timing constraints
from merging for any Optimization Technique setting. If your design contains
multiple partitions, you can select Timing-Driven Synthesis options for each
partition. If you use a .gxp as a source file, or if your design uses partitions
developed in separate Intel Quartus Prime projects, the software cannot properly
compute timing of paths that cross the partition boundaries.

3.4.5. SDC Constraint Protection

The SDC Constraint Protection option specifies whether Analysis & Synthesis should
protect registers from merging when they have incompatible timing constraints. For
example, when you turn on this option, the software does not merge two registers
that are duplicates of each other but have different multicycle constraints on them.
When you turn on the Timing-Driven Synthesis option, the software detects
registers with incompatible constraints, and you do not need to turn on SDC
Constraint Protection. Click Assignments [0 Settings 0 Compiler Settings [
Advanced Settings (Synthesis) to enable the SDC constraint protection option.

3.4.6. PowerPlay Power Optimization

The PowerPlay Power Optimization logic option controls the power-driven
compilation setting of Analysis & Synthesis and determines how aggressively Analysis
& Synthesis optimizes your design for power.

Related Information

e Power Optimization logic option
For more information about the available settings for the power optimization
logic option and a list of supported devices

e Power Optimization
For more information about optimizing your design for power utilization

e Power Analyzer
For information about analyzing your power results

3.4.7. Limiting Resource Usage in Partitions

Resource balancing is important when performing Analysis & Synthesis. During
resource balancing, Intel Quartus Prime Integrated Synthesis considers the amount of
used and available DSP and RAM blocks in the device, and tries to balance these
resources to prevent no-fit errors.

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

145

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_optimize_power_during_synth.htm
https://www.intel.com/content/www/us/en/docs/programmable/683506/current/power-optimization.html
https://www.intel.com/content/www/us/en/docs/programmable/683506/current/power-analysis.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
® 683283 | 2018.09.24

Note:

For DSP blocks, Resource balancing is important when performing Analysis &
Synthesis. During resource balancing, Intel Quartus Prime Integrated Synthesis
considers the amount of used and available DSP and RAM blocks in the device, and
tries to balance these resources to prevent no-fit errors. resource balancing converts
the remaining DSP blocks to equivalent logic if there are more DSP blocks in your
design that the software can place in the device. For RAM blocks, resource balancing
converts RAM blocks to different types of RAM blocks if there are not enough blocks of
a certain type available in the device; however, Intel Quartus Prime Integrated
Synthesis does not convert RAM blocks to logic.

The RAM balancing feature does not support Stratix V devices because Stratix V has
only M20K memory blocks.

By default, Intel Quartus Prime Integrated Synthesis considers the information in the
targeted device to identify the number of available DSP or RAM blocks. However, in
incremental compilation, each partition considers the information in the device
independently and consequently assumes that the partition has all the DSP and RAM
blocks in the device available for use, resulting in over allocation of DSP or RAM blocks
in your design, which means that the total number of DSP or RAM blocks used by all
the partitions is greater than the number of DSP or RAM blocks available in the device,
leading to a no-fit error during the fitting process.

Related Information

e Creating LogicLock Regions on page 146
For more information about preventing a no-fit error during the fitting process

e Using Assighments to Limit the Number of RAM and DSP Blocks on page 147
For more information about preventing a no-fit error during the fitting process

3.4.7.1. Creating LogicLock Regions

The floorplan-aware synthesis feature allows you to use LogicLock regions to define
resource allocation for DSP blocks and RAM blocks. For example, if you assign a
certain partition to a certain LogicLock region, resource balancing takes into account
that all the DSP and RAM blocks in that partition need to fit in this LogicLock region.
Resource balancing then balances the DSP and RAM blocks accordingly.

Because floorplan-aware balancing step considers only one partition at a time, it does
not know that nodes from another partition may be using the same resources. When
using this feature, Altera recommends that you do not manually assign nodes from
different partitions to the same LogicLock region.

If you do not want the software to consider the LogicLock floorplan constraints when
performing DSP and RAM balancing, you can turn off the floorplan-aware synthesis
feature. Click Assignments [0 Settings 0 Compiler Settings 0 Advanced
Settings (Synthesis) to disable Use LogicLock Constraints During Resource
Balancing option.

Related Information

Intel Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design
on page 7
For more information about using LogicLock regions to create a floorplan for
incremental compilation

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

146

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
683283 | 2018.09.24 ®

3.4.7.2. Using Assignments to Limit the Number of RAM and DSP Blocks

For DSP and RAM block balancing, you can use assignments to limit the maximum
number of blocks that the balancer allows. You can set these assignments globally or
on individual partitions. For DSP block balancing, the Maximum DSP Block Usage
logic option allows you to specify the maximum number of DSP blocks that the DSP
block balancer assumes are available for the current partition. For RAM blocks, the
floorplan-aware logic option allows you to specify maximum resources for different
RAM types, such as Maximum Number of MAK/M9K/M20K/M10K Memory
Blocks, Maximum Number of M512 Memory Blocks, Maximum Number of M-
RAM/M144K Memory Blocks, or Maximum Number of LABs.

The partition-specific assignment overrides the global assignment, if any. However,
each partition that does not have a partition-specific assignment uses the value set by
the global assignment, or the value derived from the device size if no global
assignment exists. This action can also lead to over allocation. Therefore, Altera
recommends that you always set the assignment on each partition individually.

To select the Maximum Number <block type> Memory Blocks option or the
Maximum DSP Block Usage option globally, click Assignments 0 Settings O
Compiler Settings 0 Advanced Settings (Synthesis). You can use the Assignment
Editor to set this assignment on a partition by selecting the assignment, and setting it
on the root entity of a partition. You can set any positive integer as the value of this
assignment. If you set this assignment on a name other than a partition root, Analysis
& Synthesis gives an error.

Related Information

e Maximum DSP Block Usage logic option on page 0
For more information about the Maximum DSP Block Usage logic option,
including a list of supported device families

e Maximum Number of M4K/M9K/M20K/M10K Memory Blocks logic option on page
0
For more information about the Maximum Number of M4K/M9K/M20K/
M10K Memory Blocks logic option, including a list of supported device
families

3.4.8. Restructure Multiplexers

The Restructure Multiplexers logic option restructures multiplexers to create more
efficient use of area, allowing you to implement multiplexers with a reduced number of
LEs or ALMs.

When multiplexers from one part of your design feed multiplexers in another part of
your design, trees of multiplexers form. Multiplexers may arise in different parts of
your design through Verilog HDL or VHDL constructs such as the “if,” “case,” or “*?2:"
statements. Multiplexer buses occur most often as a result of multiplexing together
arrays in Verilog HDL, or STD_LOGIC_VECTOR signals in VHDL. The Restructure
Multiplexers logic option identifies buses of multiplexer trees that have a similar
structure. This logic option optimizes the structure of each multiplexer bus for the
target device to reduce the overall amount of logic in your design.

Results of the multiplexer optimizations are design dependent, but area reductions as
high as 20% are possible. The option can negatively affect your design’s fyax-

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

147

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_max_balancing_dsp_blocks.htm
http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_max_ram_blocks_m4k.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
® 683283 | 2018.09.24

Related Information

e Analysis Synthesis Optimization Results Reports
For more information about the Multiplexer Restructuring Statistics report table
for each bus of multiplexers

e Restructure Multiplexers logic option
For more information about the Restructure Multiplexers logic option, including
the settings and a list of supported device families

3.4.9. Synthesis Effort

The Synthesis Effort logic option specifies the overall synthesis effort level in the
Intel Quartus Prime software.

Related Information

Synthesis Effort logic option
For more information about Synthesis Effort logic option, including a list of
supported device families

3.4.10. Fitter Intial Placement Seed

Specifies the starting value the Fitter uses when randomly determining the initial
placement for the current design. The value can be any non-negative integer value.
Changing the starting value may or may not produce better fitting. Specify a starting
value only if the Fitter is not meeting timing requirements by a small amount. Use the
Design Space Explorer to sweep many seed values easily and find the best value for
your project. Modifying the design or Quartus settings even slightly usually changes
which seed is best for the design.

To set the Synthesis Seed option, click Assignments [0 Settings 0 Compiler
Settings 0 Advanced Settings (Fitter). The default value is 1. You can specify a
positive integer value.

3.4.11. State Machine Processing

The State Machine Processing logic option specifies the processing style to
synthesize a state machine.

The default state machine encoding, Auto, uses one-hot encoding for FPGA devices
and minimal-bits encoding for CPLDs. These settings achieve the best results on
average, but another encoding style might be more appropriate for your design, so
this option allows you to control the state machine encoding.

For one-hot encoding, the Intel Quartus Prime software does not guarantee that each
state has one bit set to one and all other bits set to zero. Intel Quartus Prime
Integrated Synthesis creates one-hot register encoding with standard one-hot
encoding and then inverts the first bit. This results in an initial state with all zero
values, and the remaining states have two 1 values. Intel Quartus Prime Integrated
Synthesis encodes the initial state with all zeros for the state machine power-up
because all device registers power up to a low value. This encoding has the same

Intel Quartus Prime Standard Edition User Guide: Design Compilation D Send Feedback

148

http://quartushelp.altera.com/current/index.htm#report/rpt/rpt_file_analysis_optimize_results.htm
http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_mux_restructure.htm
http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_synthesis_effort.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
683283 | 2018.09.24 ®

properties as true one-hot encoding: the software recognizes each state by the value
of one bit. For example, in a one-hot-encoded state machine with five states, including
an initial or reset state, the software uses the following register encoding:

State 0 000O0O
State 1 00011
State 2 00101
State 3 01001
State 4 10001

If you set the State Machine Processing logic option to User-Encoded in a Verilog
HDL design, the software starts with the original design values for the state constants.
For example, a Verilog HDL design can contain the following declaration:

parameter SO = 4"p1010, S1 = 4°b0101, ...

If the software infers the states SO, S1, ... the software uses the encoding
4*p1010, 4"b0101, If necessary, the software inverts bits in a user-encoded
state machine to ensure that all bits of the reset state of the state machine are zero.

Note: You can view the state machine encoding from the Compilation Report under the State
Machines of the Analysis & Synthesis Report. The State Machine Viewer displays only a
graphical representation of the state machines as interpreted from your design.

To assign your own state encoding with the User-Encoded setting of the State
Machine Processing option in a VHDL design, you must apply specific binary
encoding to the elements of an enumerated type because enumeration literals have no
numeric values in VHDL. Use the syn_encoding synthesis attribute to apply your
encoding values.

Related Information

e Manually Specifying State Assignments Using the syn_encoding Attribute on page
149

e State Machine Processing logic option

3.4.11.1. Manually Specifying State Assignments Using the syn_encoding
Attribute

The Intel Quartus Prime software infers state machines from enumerated types and
automatically assigns state encoding based on State Machine Processing on page 148.

With this logic option, you can choose the value User-Encoded to use the encoding
from your HDL code. However, in standard VHDL code, you cannot specify user
encoding in the state machine description because enumeration literals have no
numeric values in VHDL.

To assign your own state encoding for the User-Encoded State Machine
Processing setting, use the syn_encoding synthesis attribute to apply specific
binary encodings to the elements of an enumerated type or to specify an encoding
style. The Intel Quartus Prime software can implement Enumeration Types with
different encoding styles, as listed in this table.

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

149

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_smp_process_type.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

intel.

3. Intel Quartus Prime Integrated Synthesis
683283 | 2018.09.24

Table 16. syn_encoding Attribute Values

Attribute Value Enumeration Types

"default" Use an encoding based on the number of enumeration literals in the Enumeration Type. If the number of
literals is less than five, use the "sequential’ encoding. If the number of literals is more than five, but
fewer than 50, use a *‘one-hot" encoding. Otherwise, use a *"gray" encoding.

"'sequential™ Use a binary encoding in which the first enumeration literal in the Enumeration Type has encoding 0 and the
second 1.

"gray" Use an encoding in which the encodings for adjacent enumeration literals differ by exactly one bit. An N-bit
gray code can represent 2N values.

""jJohnson™ Use an encoding similar to a gray code. An N-bit Johnson code can represent at most 2N states, but
requires less logic than a gray encoding.

"one-hot" The default encoding style requiring N bits, in which N is the number of enumeration literals in the
Enumeration Type.

"'compact” Use an encoding with the fewest bits.

"user™ Encode each state using its value in the Verilog source. By changing the values of your state constants, you
can change the encoding of your state machine.

The syn_encoding attribute must follow the enumeration type definition, but
precede its use.

Related Information
State Machine Processing on page 148

3.4.11.2. Manually Specifying Enumerated Types Using the enum_encoding
Attribute

Note:

Intel Quartus Prime Standard Edition User Guide: Design Compilation

150

By default, the Intel Quartus Prime software one-hot encodes all enumerated types
you defined. With the enum_encoding attribute, you can specify the logic encoding
for an enumerated type and override the default one-hot encoding to improve the
logic efficiency.

If an enumerated type represents the states of a state machine, using the
enum_encoding attribute to specify a manual state encoding prevents the Compiler
from recognizing state machines based on the enumerated type. Instead, the
Compiler processes these state machines as regular logic with the encoding specified
by the attribute, and the Report window for your project does not list these states
machines as state machines. If you want to control the encoding for a recognized
state machine, use the State Machine Processing logic option and the
syn_encoding synthesis attribute.

To use the enum_encoding attribute in a VHDL design file, associate the attribute
with the enumeration type whose encoding you want to control. The enum_encoding
attribute must follow the enumeration type definition, but precede its use. In addition,
the attribute value should be a string literal that specifies either an arbitrary user
encoding or an encoding style of ""default", ""sequential’’, ""gray"’, "johnson",
or "'one-hot".

D Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
683283 | 2018.09.24 ®

An arbitrary user encoding consists of a space-delimited list of encodings. The list
must contain as many encodings as the number of enumeration literals in your
enumeration type. In addition, the encodings should have the same length, and each
encoding must consist solely of values from the std_ulogic type declared by the
std_logic_1164 package in the IEEE library.

In this example, the enum_encoding attribute specifies an arbitrary user encoding
for the enumeration type fruit.

Example 19. Specifying an Arbitrary User Encoding for Enumerated Type

type fruit is (apple, orange, pear, mango);
attribute enum_encoding : string;
attribute enum_encoding of fruit : type is "11 01 10 00";

This example shows the encoded enumeration literals:

Example 20. Encoded Enumeration Literals

apple = "11"
orange = "01"
pear = ""10"
mango = "00"

Altera recommends that you specify an encoding style, rather than a manual user
encoding, especially when the enumeration type has a large number of enumeration
literals. The Intel Quartus Prime software can implement Enumeration Types with the
different encoding styles, as shown in this table.

Table 17. enum_encoding Attribute Values
Attribute Value Enumeration Types
"default” Use an encoding based on the number of enumeration literals in the enumeration type. If the number of

literals are fewer than five, use the "'sequential’ encoding. If the number of literals are more than five,
but fewer than 50 literals, use a ""one-hot" encoding. Otherwise, use a "‘gray"" encoding.

"sequential™ Use a binary encoding in which the first enumeration literal in the enumeration type has encoding O and
the second 1.

"gray" Use an encoding in which the encodings for adjacent enumeration literals differ by exactly one bit. An N-bit
gray code can represent 2N values.

""johnson™ Use an encoding similar to a gray code. An N-bit Johnson code can represent at most 2N states, but
requires less logic than a gray encoding.

"one-hot" The default encoding style requiring N bits, in which N is the number of enumeration literals in the
enumeration type.

In Specifying an Arbitrary User Encoding for Enumerated Type on page 150, the
enum_encoding attribute manually specified a gray encoding for the enumeration
type Fruit. You can also concisely write this example by specifying the ""gray"’
encoding style instead of a manual encoding, as shown in the following example:

Example 21. Specifying the “gray” Encoding Style or Enumeration Type
type fruit is (apple, orange, pear, mango);

attribute enum_encoding : string;
attribute enum_encoding of fruit : type is “‘gray";

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

151

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
® 683283 | 2018.09.24

3.4.12. Safe State Machine

Table 18.

The Safe State Machine logic option and corresponding syn_encoding attribute
value safe specify that the software must insert extra logic to detect an illegal state,
and force the transition of the state machine to the reset state.

A finite state machine can enter an illegal state—meaning the state registers contain a
value that does not correspond to any defined state. By default, the behavior of the
state machine that enters an illegal state is undefined. However, you can set the
syn_encoding attribute to safe or use the Safe State Machine logic option if you
want the state machine to recover deterministically from an illegal state. The software
inserts extra logic to detect an illegal state, and forces the transition of the state
machine to the reset state. You can use this logic option when the state machine
enters an illegal state. The most common cause of an illegal state is a state machine
that has control inputs that come from another clock domain, such as the control logic
for a clock-crossing FIFO, because the state machine must have inputs from another
clock domain. This option protects only state machines (and not other registers) by
forcing them into the reset state. You can use this option if your design has
asynchronous inputs. However, Altera recommends using a synchronization register
chain instead of relying on the safe state machine option.

The safe state machine value does not use any user-defined default logic from your
HDL code that corresponds to unreachable states. Verilog HDL and VHDL enable you
to specify a behavior for all states in the state machine explicitly, including
unreachable states. However, synthesis tools detect if state machine logic is
unreachable and minimize or remove the logic. Synthesis tools also remove any flag
signals or logic that indicate such an illegal state. If the software implements the state
machine as safe, the recovery logic added by Intel Quartus Prime Integrated Synthesis
forces its transition from an illegal state to the reset state.

You can set the Safe State Machine logic option globally, or on individual state
machines. To set this logic option, click Assignments 0 Settings 0 Compiler
Settings U Advanced Settings (Synthesis).

Setting the syn_encodi ng saf e attribute on a State Machine in HDL

HDL Code

Verilog HDL

reg [2:0] my_fsm /* synthesis syn_encoding = "'safe" */;

Verilog-2001 and
SystemVerilog

(* syn_encoding = "safe"™ *) reg [2:0] my_fsm;

VHDL

ATTRIBUTE syn_encoding OF my_fsm : TYPE IS "safe";

If you specify an encoding style, separate the encoding style value in the quotation
marks with the safe value with a comma, as follows: "'safe, one-hot" or "safe,

gray".

Safe state machine implementation can result in a noticeable area increase for your
design. Therefore, Altera recommends that you set this option only on the critical
state machines in your design in which the safe mode is necessary, such as a state
machine that uses inputs from asynchronous clock domains. You may not need to use
this option if you correctly synchronize inputs coming from other clock domains.

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

152

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
683283 | 2018.09.24 ®

Note: If you create the safe state machine assignment on an instance that the software
fails to recognize as a state machine, or an entity that contains a state machine, the
software takes no action. You must restructure the code, so that the software
recognizes and infers the instance as a state machine.

Related Information

¢ Manually Specifying State Assignments Using the syn_encoding Attribute on page
149

e Safe State Machine logic option
For more information about the Safe State Machine logic option

3.4.13. Power-Up Level

This logic option causes a register (flipflop) to power up with the specified logic level,
either high (1) or low (0). The registers in the core hardware power up to O in all
Altera devices. For the register to power up with a logic level high, the Compiler
performs an optimization referred to as NOT-gate push back on the register. NOT-gate
push back adds an inverter to the input and the output of the register, so that the
reset and power-up conditions appear to be high and the device operates as expected.
The register itself still powers up to 0, but the register output inverts so the signal
arriving at all destinations is 1.

The Power-Up Level option supports wildcard characters, and you can apply this
option to any register, registered logic cell WYSIWYG primitive, or to a design entity
containing registers, if you want to set the power level for all registers in your design
entity. If you assign this option to a registered logic cell WYSIWYG primitive, such as
an atom primitive from a third-party synthesis tool, you must turn on the Perform
WYSIWYG Primitive Resynthesis logic option for the option to take effect. You can
also apply the option to a pin with the logic configurations described in the following
list:

e If you turn on this option for an input pin, the option transfers to the register that
the pin drives, if all these conditions are present:

— No logic, other than inversion, between the pin and the register.
— The input pin drives the data input of the register.
— The input pin does not fan-out to any other logic.

e If you turn on this option for an output or bidirectional pin, the option transfers to
the register that feeds the pin, if all these conditions are present:

— No logic, other than inversion, between the register and the pin.

— The register does not fan out to any other logic.

Related Information

Power-Up Level logic option
For more information about the Power-Up Level logic option, including information
on the supported device families

3.4.13.1. Inferred Power-Up Levels

Intel Quartus Prime Integrated Synthesis reads default values for registered signals
defined in Verilog HDL and VHDL code, and converts the default values into Power-
Up Level settings. The software also synthesizes variables with assigned values in

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

153

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_safe_state_machine.htm
http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_power_up_high.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
® 683283 | 2018.09.24

Verilog HDL initial blocks into power-up conditions. Synthesis of these default and
initial constructs allows synthesized behavior of your design to match, as closely as
possible, the power-up state of the HDL code during a functional simulation.

The following register declarations all set a power-up level of V¢ or a logic value “1”,
as shown in this example:

signal q : std_logic = "1"; -- power-up to VCC
reg q = 1*bl; // power-up to VCC

reg q;
initial begin q = 1"b1; end // power-up to VCC

3.4.14. Power-Up Don’t Care

This logic option allows the Compiler to optimize registers in your design that do not
have a defined power-up condition.

For example, your design might have a register with its D input tied to V¢, and with
no clear signal or other secondary signals. If you turn on this option, the Compiler can
choose for the register to power up to Vcc. Therefore, the output of the register is
always Vcc. The Compiler can remove the register and connect its output to Vcc. If
you turn this option off or if you set a Power-Up Level assignment of Low for this
register, the register transitions from GND to V-c when your design starts up on the
first clock signal. Thus, the register is at Vcc and you cannot remove the register.
Similarly, if the register has a clear signal, the Compiler cannot remove the register
because after asserting the clear signal, the register transitions again to GND and
back to Vcc.

If the Compiler performs a Power-Up Don’t Care optimization that allows it to
remove a register, it issues a message to indicate that it is doing so.

This project-wide option does not apply to registers that have the Power-Up Level
logic option set to either High or Low.

Related Information

Power-Up Don’t Care logic option
For more information about Power-Up Don't Care logic option and a list of
supported devices

3.4.15. Remove Duplicate Registers

The Remove Duplicate Registers logic option removes registers that are identical to
other registers.

Related Information

Remove Duplicate Registers logic option

For more information about Remove Duplicate Registers logic option and the
supported devices

3.4.16. Preserve Registers

This attribute and logic option directs the Compiler not to minimize or remove a
specified register during synthesis optimizations or register netlist optimizations.
Optimizations can eliminate redundant registers and registers with constant drivers;

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

154

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_allow_power_up_dont_care.htm
http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_dup_reg_extraction.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
683283 | 2018.09.24 ®

this option prevents the software from reducing a register to a constant or merging
with a duplicate register. This option can preserve a register so you can observe the
register during simulation or with the Signal Tap. Additionally, this option can preserve
registers if you create a preliminary version of your design in which you have not
specified the secondary signals. You can also use the attribute to preserve a duplicate
of an I/0 register so that you can place one copy of the I/O register in an I/0 cell and
the second in the core.

Note: This option cannot preserve registers that have no fan-out.

The Preserve Registers logic option prevents the software from inferring a register
as a state machine.

You can set the Preserve Registers logic option in the Intel Quartus Prime software,
or you can set the preserve attribute in your HDL code. In these examples, the Intel
Quartus Prime software preserves the my_reg register.

Table 19. Setting the syn_preser ve attribute in HDL Code

HDL Code(5)

Verilog HDL reg my_reg /* synthesis syn_preserve = 1 */;

Verilog-2001 (* syn_preserve = 1 *) reg my_reg;

Table 20. Setting the pr eser ve attribute in HDL Code

In addition to preserve, the Intel Quartus Prime software supports the syn_preserve attribute name for
compatibility with other synthesis tools.

HDL Code

VHDL signal my_reg : stdlogic;

attribute preserve : boolean;
attribute preserve of my_reg : signal is true;

Related Information

e Preserve Registers logic option
For more information about the Preserve Registers logic option and the
supported devices

e Noprune Synthesis Attribute/Preserve Fan-out Free Register Node on page 156
For more information about preventing the removal of registers with no fan-out

3.4.17. Disable Register Merging/Don’t Merge Register

This logic option and attribute prevents the specified register from merging with other
registers and prevents other registers from merging with the specified register. When
applied to a design entity, it applies to all registers in the entity.

(3) The = 1 after the preserve are optional, because the assignment uses a default value of 1
when you specify the assignment.

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

155

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_preserve_register.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
® 683283 | 2018.09.24

You can set the Disable Register Merging logic option in the Intel Quartus Prime
software, or you can set the dont_merge attribute in your HDL code, as shown in
these examples. In these examples, the logic option or the attribute prevents the
my_reg register from merging.

Table 21. Setting the dont _ner ge attribute in HDL code

HDL Code

Verilog HD reg my_reg /* synthesis dont_merge */;

Verilog-2001 and

- (* dont_merge *) reg my_reg;
SystemVerilog

VHDL signal my_reg : stdlogic;

attribute dont_merge : boolean;
attribute dont_merge of my_reg : signal is true;

Related Information

Disable Register Merging logic option
For more information about the Disable Register Merging logic option and the
supported devices

3.4.18. Noprune Synthesis Attribute/Preserve Fan-out Free Register Node

This synthesis attribute and corresponding logic option direct the Compiler to preserve
a fan-out-free register through the entire compilation flow. This option is different
from the Preserve Registers option, which prevents the Intel Quartus Prime
software from reducing a register to a constant or merging with a duplicate register.
Standard synthesis optimizations remove nodes that do not directly or indirectly feed
a top-level output pin. This option can retain a register so you can observe the
register in the Simulator or the Signal TapAdditionally, this option can retain registers
if you create a preliminary version of your design in which you have not specified the
fan-out logic of the register.

You can set the Preserve Fan-out Free Register Node logic option in the Intel
Quartus Prime software, or you can set the noprune attribute in your HDL code, as
shown in these examples. In these examples, the logic option or the attribute
preserves the my_reg register.

Note: You must use the noprune attribute instead of the logic option if the register has no
immediate fan-out in its module or entity. If you do not use the synthesis attribute,
the software removes (or “prunes”) registers with no fan-out during Analysis &
Elaboration before the logic synthesis stage applies any logic options. If the register
has no fan-out in the full design, but has fan-out in its module or entity, you can use
the logic option to retain the register through compilation.

The software supports the attribute name syn_noprune for compatibility with other
synthesis tools.

Table 22. Setting the nopr une attribute in HDL code

HDL Code
Verilog HD reg my_reg /* synthesis syn_noprune */;
continued...
Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

156

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_dont_merge_register.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
683283 | 2018.09.24 ®

HDL Code

Verilog-2001 and

- (* noprune *) reg my_reg;
SystemVerilog

VHDL

signal my_reg : stdlogic;
attribute noprune: boolean;
attribute noprune of my_reg : signal is true;

Related Information

Preserve Fan-out Free Register logic option
For more information about Preserve Fan-out Free Register Node logic option
and a list of supported devices

3.4.19. Keep Combinational Node/Implement as Output of Logic Cell

This synthesis attribute and corresponding logic option direct the Compiler to keep a
wire or combinational node through logic synthesis minimizations and netlist
optimizations. A wire that has a keep attribute or a node that has the Implement as
Output of Logic Cell logic option applied becomes the output of a logic cell in the
final synthesis netlist, and the name of the logic cell remains the same as the name of
the wire or node. You can use this directive to make combinational nodes visible to the
Signal Tap.

Note: The option cannot keep nodes that have no fan-out. You cannot maintain node names
for wires with tri-state drivers, or if the signal feeds a top-level pin of the same name
(the software changes the node name to a name such as <net name>~buf0).

You can use the Ignore LCELL Buffers logic option to direct Analysis & Synthesis to
ignore logic cell buffers that the Implement as Output of Logic Cell logic option or
the LCELL primitive created. If you apply this logic option to an entity, it affects all
lower-level entities in the hierarchy path.

Note: To avoid unintended design optimizations, ensure that any entity instantiated with
Altera or third-party IP that relies on logic cell buffers for correct behavior does not
inherit the Ignore LCELL Buffers logic option. For example, if an IP core uses logic
cell buffers to manage high fan-out signals and inherits the Ignore LCELL Buffers
logic option, the target device may no longer function properly.

You can turn off the Ignore LCELL Buffers logic option for a specific entity to
override any assignments inherited from higher-level entities in the hierarchy path if
logic cell buffers created by the Implement as Output of Logic Cell logic option or
the LCELL primitive are required for correct behavior.

You can set the Implement as Output of Logic Cell logic option in the Intel Quartus
Prime software, or you can set the keep attribute in your HDL code, as shown in these
tables. In these tables, the Compiler maintains the node name my_wire.

Table 23. Setting the keep Attribute in HDL code

HDL Code
Verilog HD wire my_wire /* synthesis keep = 1 */;
Verilog-2001 (* keep = 1 *) wire my_wire;
D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

157

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_preserve_fanout_free_node.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
® 683283 | 2018.09.24

Table 24. Setting the syn_keep Attribute in HDL Code

In addition to keep, the Intel Quartus Prime software supports the syn_keep attribute name for compatibility
with other synthesis tools.

HDL Code

VHDL signal my wire: bit;

attribute syn_keep: boolean;
attribute syn_keep of my_wire: signal is true;

Related Information

Implement as Output of Logic Cell logic option
For more information about the Implement as Output of Logic Cell logic option
and the supported devices

3.4.20. Disabling Synthesis Netlist Optimizations with dont_retime
Attribute

This attribute disables synthesis retiming optimizations on the register you specify.
When applied to a design entity, it applies to all registers in the entity.

You can turn off retiming optimizations with this option and prevent node name
changes, so that the Compiler can correctly use your timing constraints for the
register.

You can set the Netlist Optimizations logic option to Never Allow in the Intel
Quartus Prime software to disable retiming along with other synthesis netlist
optimizations, or you can set the dont_retime attribute in your HDL code, as shown
in the following table. In the following table, the code prevents my_reg register from
being retimed.

Table 25. Setting the dont _r et i ne Attribute in HDL Code

HDL Code

Verilog HDL reg my_reg /* synthesis dont_retime */;

Verilog-2001 and SystemVerilo (* dont_retime *) reg my_reg:

VHD signal my_reg : std_logic;
attribute dont_retime : boolean;
attribute dont_retime of my_reg : signal is true;
Note: For compatibility with third-party synthesis tools, Intel Quartus Prime Integrated

Synthesis also supports the attribute syn_allow_retiming. To disable retiming, set
syn_allow_retiming to O (Verilog HDL) or False (VHDL). This attribute does not
have any effect when you set the attribute to 1 or true.

3.4.21. Disabling Synthesis Netlist Optimizations with dont_replicate
Attribute

This attribute disables synthesis replication optimizations on the register you specify.
When applied to a design entity, it applies to all registers in the entity.

You can turn off register replication (or duplication) optimizations with this option, so
that the Compiler uses your timing constraints for the register.

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

158

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_implement_as_lcell.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
683283 | 2018.09.24 ®

Table 26.

You can set the Netlist Optimizations logic option to Never Allow in the Intel
Quartus Prime software to disable replication along with other synthesis netlist
optimizations, or you can set the dont_replicate attribute in your HDL code, as
shown in these examples. In these examples, the code prevents the replication of the
my_reg register.

Setting the dont _repl i cat e attribute in HDL Code

HDL Code

Verilog HD

reg my_reg /* synthesis dont_replicate */;

Verilog-2001 and
SystemVerilog

(* dont_replicate *) reg my_reg;

VHDL signal my_reg : std_logic;
attribute dont_replicate : boolean;
attribute dont_replicate of my_reg : signal is true;
Note: For compatibility with third-party synthesis tools, Intel Quartus Prime Integrated

Synthesis also supports the attribute syn_replicate. To disable replication, set
syn_replicate to O (Verilog HDL) or false (VHDL). This attribute does not have
any effect when you set the attribute to 1 or true.

3.4.22. Maximum Fan-Out

This Maximum Fan-Out attribute and logic option direct the Compiler to control the
number of destinations that a node feeds. The Compiler duplicates a node and splits
its fan-out until the individual fan-out of each copy falls below the maximum fan-out
restriction. You can apply this option to a register or a logic cell buffer, or to a design
entity that contains these elements. You can use this option to reduce the load of
critical signals, which can improve performance. You can use the option to instruct the
Compiler to duplicate a register that feeds nodes in different locations on the target
device. Duplicating the register can enable the Fitter to place these new registers
closer to their destination logic to minimize routing delay.

To turn off the option for a given node if you set the option at a higher level of the
design hierarchy, in the Netlist Optimizations logic option, select Never Allow. If
not disabled by the Netlist Optimizations option, the Compiler acknowledges the
maximum fan-out constraint as long as the following conditions are met:

e The node is not part of a cascade, carry, or register cascade chain.
e The node does not feed itself.

e The node feeds other logic cells, DSP blocks, RAM blocks, and pins through data,
address, clock enable, and other ports, but not through any asynchronous control
ports (such as asynchronous clear).

The Compiler does not create duplicate nodes in these cases, because there is no clear
way to duplicate the node, or to avoid the small differences in timing which could
produce functional differences in the implementation (in the third condition above in
which asynchronous control signals are involved). If you cannot apply the constraint
because you do not meet one of these conditions, the Compiler issues a message to
indicate that the Compiler ignores the maximum fan-out assignment. To instruct the
Compiler not to check node destinations for possible problems such as the third
condition, you can set the Netlist Optimizations logic option to Always Allow for a
given node.

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

159

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
® 683283 | 2018.09.24

Note: If you have enabled any of the Intel Quartus Prime netlist optimizations that affect
registers, add the preserve attribute to any registers to which you have set a
maxfan attribute. The preserve attribute ensures that the netlist optimization
algorithms, such as register retiming, do not affect the registers.

You can set the Maximum Fan-Out logic option in the Intel Quartus Prime software.
This option supports wildcard characters. You can also set the maxfan attribute in
your HDL code, as shown in these examples. In these examples, the Compiler
duplicates the clk_gen register, so its fan-out is not greater than 50.

Table 27. Setting the nmaxf an attribute in HDL Code

HDL Code

Verilog HDL reg clk_gen /* synthesis syn_maxfan = 50 */;

Verilog-2001 (* maxfan = 50 *) reg clk_gen;

Table 28. Setting the syn_nexf an attribute in HDL Code

The Intel Quartus Prime software supports the syn_maxfan attribute for compatibility with other synthesis
tools.

HDL Code

VHDL signal clk_gen : stdlogic;

attribute maxfan : signal ;
attribute maxfan of clk_gen : signal is 50;

Related Information

¢ Netlist Optimizations and Physical Synthesis
For details about netlist optimizations

e Maximum Fan-Out logic option
For more information about the Maximum Fan-Out logic option and the
supported devices

3.4.23. Controlling Clock Enable Signals with Auto Clock Enable
Replacement and direct_enable

The Auto Clock Enable Replacement logic option allows the software to find logic
that feeds a register and move the logic to the register’s clock enable input port. To
solve fitting or performance issues with designs that have many clock enables, you
can turn off this option for individual registers or design entities. Turning the option off
prevents the software from using the register’s clock enable port. The software
implements the clock enable functionality using multiplexers in logic cells.

If the software does not move the specific logic to a clock enable input with the Auto
Clock Enable Replacement logic option, you can instruct the software to use a
direct clock enable signal. The attribute ensures that the signal drives the clock enable
port, and the software does not optimize or combine the signal with other logic.

These tables show how to set this attribute to ensure that the attribute preserves the
signal and uses the signal as a clock enable.

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

160

https://www.intel.com/content/www/us/en/docs/programmable/683230/current/netlist-optimizations-and-physical-synthesis-29493.html
http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_max_fanout.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
683283 | 2018.09.24 ®

Table 29. Setting the di r ect _enabl e in HDL Code

HDL Code

Verilog HDL wire my_enable /* synthesis direct_enable = 1 */ ;

VHDL attribute direct_enable: boolean;

attribute direct_enable of my_enable: signal is true;

Table 30. Setting the syn_di rect _enabl e in HDL Code

The Intel Quartus Prime software supports the syn_direct_enable attribute name for compatibility with
other synthesis tools.

HDL Code

Verilog-2001 and

- (* syn_direct_enable *) wire my_enable;
SystemVerilog

Related Information

Auto Clock Enable Replacement logic option
For more information about the Auto Clock Enable Replacement logic option
and the supported devices

3.5. Inferring Multiplier, DSP, and Memory Functions from HDL
Code

The Intel Quartus Prime Compiler automatically recognizes multipliers, multiply-
accumulators, multiply-adders, or memory functions described in HDL code, and either
converts the HDL code into respective IP core or maps them directly to device atoms
or memory atoms. If the software converts the HDL code into an IP core, the software
uses the Altera IP core code when you compile your design, even when you do not
specifically instantiate the IP core. The software infers IP cores to take advantage of
logic that you optimize for Altera devices. The area and performance of such logic can
be better than the results from inferring generic logic from the same HDL code.

Additionally, you must use IP cores to access certain architecture-specific features,
such as RAM, DSP blocks, and shift registers that provide improved performance
compared with basic logic cells.

The Intel Quartus Prime software provides options to control the inference of certain
types of IP cores.

3.5.1. Multiply-Accumulators and Multiply-Adders

Use the Auto DSP Block Replacement logic option to control DSP block inference for
multiply-accumulations and multiply-adders. To disable inference, turn off this option
for the entire project on the Advanced Analysis & Synthesis dialog box of the
Compiler Settings page.

Related Information

Auto DSP Block Replacement logic option
For more information about the Auto DSP Block Replacement logic option and the
supported devices

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

161

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_auto_clock_enable_recognition.htm
http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_auto_dsp_recognition.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
® 683283 | 2018.09.24

3.5.2. Shift Registers

Note:

Use the Auto Shift Register Replacement logic option to control shift register
inference. This option has three settings: Off, Auto and Always. Auto is the default
setting in which Intel Quartus Prime Integrated Synthesis decides which shift registers
to replace or leave in registers. Placing shift registers in memory saves logic area, but
can have a negative effect on f5«. Intel Quartus Prime Integrated Synthesis uses the
optimization technique setting, logic and RAM utilization of your design, and timing
information from Timing-Driven Synthesis to determine which shift registers are
located in memory and which are located in registers. To disable inference, click
Assignments [Settings 0 Compiler Settings [0 Advanced Settings
(Synthesis). You can also disable the option for a specific block with the Assignment
Editor. Even if you set the logic option to On or Auto, the software might not infer
small shift registers because small shift registers do not benefit from implementation
in dedicated memory. However, you can use the Allow Any Shift Register Size for
Recognition logic option to instruct synthesis to infer a shift register even when its
size is too small.

You can use the Allow Shift Register Merging across Hierarchies option to
prevent the Compiler from merging shift registers in different hierarchies into one
larger shift register. The option has three settings: On, Off, and Auto. The Auto
setting is the default setting, and the Compiler decides whether or not to merge shift
registers across hierarchies. When you turn on this option, the Compiler allows all shift
registers to merge across hierarchies, and when you turn off this option, the Compiler
does not allow any shift registers to merge across hierarchies. You can set this option
globally or on entities or individual nodes.

The registers that the software maps to the RAM-based Shift Register IP core and
places in RAM are not available in the Simulator because their node names do not
exist after synthesis.

The Compiler turns off the Auto Shift Register Replacement logic option when you
select a formal verification tool on the EDA Tool Settings page. If you do not select a
formal verification tool, the Compiler issues a warning and the compilation report lists
shift registers that the logic option might infer. To enable an IP core for the shift
register in the formal verification flow, you can either instantiate a shift register
explicitly with the IP catalog or make the shift register into a black box in a separate
entity or module.

Related Information

e Auto Shift Register Replacement logic option
For more information about the Auto Shift Register Replacement logic option
and the supported devices

e RAM-Based Shift Register (ALTSHIFT_TAPS) User Guide
For more information about the RAM-based Shift Register IP core

3.5.3. RAM and ROM

Use the Auto RAM Replacement and Auto ROM Replacement logic options to
control RAM and ROM inference, respectively. To disable the inference, click
Assignments [Settings 0 Compiler Settings 0 Advanced Settings
(Synthesis).

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

162

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_auto_shift_register_recognition.htm
http://www.altera.com/literature/ug/ug_shift_register_ram_based.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
683283 | 2018.09.24 ®

Note: Although the software implements inferred shift registers in RAM blocks, you cannot
turn off the Auto RAM Replacement option to disable shift register replacement. Use
the Auto Shift Register Replacement option.

The software might not infer very small RAM or ROM blocks because you can
implement very small memory blocks with the registers in the logic. However, you can
use the Allow Any RAM Size for Recognition and Allow Any ROM Size for
Recognition logic options to instruct synthesis to infer a memory block even when its
size is too small.

Note: The software turns off the Auto ROM Replacement logic option when you select a
formal verification tool in the EDA Tool Settings page. If you do not select a formal
verification tool, the software issues a warning and a report panel provides a list of
ROMs that the logic option might infer. To enable an IP core for the shift register in the
formal verification flow, you can either instantiate a ROM explicitly using the IP
Catalog or create a black box for the ROM in a separate entity or in a separate
module.

Although formal verification tools do not support inferred RAM blocks, due to the
importance of inferring RAM in many designs, the software turns on the Auto RAM
Replacement logic option when you select a formal verification tool in the EDA Tool
Settings page. The software automatically performs black box instance for any
module or entity that contains an inferred RAM block. The software issues a warning
and lists the black box created in the compilation report. This black box allows formal
verification tools to proceed; however, the formal verification tool cannot verify the
entire module or entire entity that contains the RAM. Altera recommends that you
explicitly instantiate RAM blocks in separate modules or in separate entities so that the
formal verification tool can verify as much logic as possible.

Related Information
e Shift Registers on page 162

e Auto RAM Replacement logic option
For more information about the Auto RAM Replacement logic option and its
supported devices

e Auto ROM Replacement logic option
For more information about the Auto ROM Replacement logic option and its
supported devices

3.5.4. Resource Aware RAM, ROM, and Shift-Register Inference

The Intel Quartus Prime Integrated Synthesis considers resource usage when inferring
RAM, ROM, and shift registers. During RAM, ROM, and shift register inferencing,
synthesis looks at the number of memories available in the current device and does
not infer more memory than is available to avoid a no-fit error. Synthesis tries to
select the memories that are not inferred in a way that aims at the smallest increase
in logic and registers.

Resource aware RAM, ROM and shift register inference is controlled by the Resource
Aware Inference for Block RAM option. To disable this option for the entire project,
click Assignments U Settings 0 Compiler Settings 0 Advanced Settings
(Synthesis).

When you select the Auto setting, resource aware RAM, ROM, and shift register
inference use the resource counts from the largest device.

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

163

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_auto_ram_recognition.htm
http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_auto_rom_recognition.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
® 683283 | 2018.09.24

For designs with multiple partitions, Intel Quartus Prime Integrated Synthesis
considers one partition at a time. Therefore, for each partition, it assumes that all RAM
blocks are available to that partition. If this causes a no-fit error, you can limit the
number of RAM blocks available per partition with the Maximum Number of M512
Memory Blocks, Maximum Number of MAK/M9K/M20K/M10K Memory Blocks,
Maximum Number of M-RAM/M144K Memory Blocks and Maximum Number of
LABs settings in the Assignment Editor. The balancer also uses these options.

3.5.5. Auto RAM to Logic Cell Conversion

The Auto RAM to Logic Cell Conversion logic option allows Intel Quartus Prime
Integrated Synthesis to convert small RAM blocks to logic cells if the logic cell
implementation gives better quality of results. The software converts only single-port
or simple-dual port RAMs with no initialization files to logic cells. You can set this
option globally or apply it to individual RAM nodes. You can enable this option by
turning on the appropriate option for the entire project in the Advanced Analysis &
Synthesis Settings dialog box.

For Arria GX and Stratix family of devices, the software uses the following rules to
determine the placement of a RAM, either in logic cells or a dedicated RAM block:

e If the number of words is less than 16, use a RAM block if the total number of bits
is greater than or equal to 64.

e If the number of words is greater than or equal to 16, use a RAM block if the total
number of bits is greater than or equal to 32.

e Otherwise, implement the RAM in logic cells.

For the Cyclone family of devices, the software uses the following rules:
e If the number of words is greater than or equal to 64, use a RAM block.

e If the number of words is greater than or equal to 16 and less than 64, use a RAM
block if the total number of bits is greater than or equal to 128.

e Otherwise, implement the RAM in logic cells.

Related Information

Auto RAM to Logic Cell Conversion logic option
For more information about the Auto RAM to Logic Cell Conversion logic options
and the supported devices

3.5.6. RAM Style and ROM Style—for Inferred Memory

These attributes specify the implementation for an inferred RAM or ROM block. You
can specify the type of TriMatrix embedded memory block, or specify the use of
standard logic cells (LEs or ALMs). The Intel Quartus Prime software supports the
attributes only for device families with TriMatrix embedded memory blocks.

The ramstyle and romstyle attributes take a single string value. The M512, M4K,
M-RAM, MLAB, M9K, M144K, M20K, and M10K values (as applicable for the target
device family) indicate the type of memory block to use for the inferred RAM or ROM.
If you set the attribute to a block type that does not exist in the target device family,
the software generates a warning and ignores the assignment. The logic value
indicates that the Intel Quartus Prime software implements the RAM or ROM in regular
logic rather than dedicated memory blocks. You can set the attribute on a module or
entity, in which case it specifies the default implementation style for all inferred

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

164

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_auto_ram_to_lcell_conversion.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
683283 | 2018.09.24

intel.

memory blocks in the immediate hierarchy. You can also set the attribute on a specific
signal (VHDL) or variable (Verilog HDL) declaration, in which case it specifies the
preferred implementation style for that specific memory, overriding the default
implementation style.

Note: If you specify a logic value, the memory appears as a RAM or ROM block in the RTL
Viewer, but Integrated Synthesis converts the memory to regular logic during
synthesis.

In addition to ramstyle and romstyle, the Intel Quartus Prime software supports
the syn_ramstyle attribute name for compatibility with other synthesis tools.
These tables specify that you must implement all memory in the module or the
my_memory_blocks entity with a specific type of block.

Table 31. Applying a r onst yl e Attribute to a Module Declaration

HDL Code
Verilog-1995 module my_memory_blocks (...) /* synthesis romstyle = "M4K"™ */;
Table 32. Applying a ramstyle Attribute to a Module Declaration

HDL Code

Verilog-2001 and

- (* ramstyle = ""M512" *) module my_memory_blocks (-..);
SystemVerilog

Table 33. g a romstyle Attribute to an Architecture

Applyin

HDL

Code

VHDL architecture rtl of my_ my_memory_blocks is

attribute romstyle : string;
attribute romstyle of rtl
begin

: architecture is "M-RAM";

These tables specify that you must implement the inferred my_ram or my_rom
memory with regular logic instead of a TriMatrix memory block.

Table 34. Applying a syn_r anst yl e Attribute to a Variable Declaration

HDL Code

Verilog-1995 reg [0:7] my_ram[0:63] /* synthesis syn_ramstyle = "logic" */;

Table 35. Applying a r onst yl e Attribute to a Variable Declaration

HDL Code

Verilog-2001 and

- (* romstyle = "logic” *) reg [0:7] my_rom[0:63];
SystemVerilog

Intel Quartus Prime Standard Edition User Guide: Design Compilation

D Send Feedback

165

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

|
3. Intel Quartus Prime Integrated Synthesis
® 683283 | 2018.09.24

Table 36.

Applying a r anst yl e Attribute to a Signal Declaration

HDL Code

VHDL

type memory_t is array (0O to 63) of std_logic_vector (0 to 7);
signal my_ram : memory_t;

attribute ramstyle : string;

attribute ramstyle of my_ram : signal is "logic";

Table 37.

You can control the depth of an inferred memory block and optimize its usage with the
max_depth attribute. You can also optimize the usage of the memory block with this
attribute.

These tables specify the depth of the inferred memory mem using the max_depth
synthesis attribute.

Applying a max_depth Attribute to a Variable Declaration

HDL Code

Verilog-1995

reg [7:0] mem [127:0] /* synthesis max_depth = 2048 */

Table 38.

Applying a max_depth Attribute to a Variable Declaration

HDL Code

Verilog-2001 and
SystemVerilog

(* max_depth = 2048*) reg [7:0] mem [127:0];

Table 39.

Applying a max_depth Attribute to a Variable Declaration

HDL Code

VHDL

type ram_block is array (0 to 31) of std_logic_vector (2 downto 0);
signal mem : ram block;

attribute max_depth : natural;

attribute max_depth OF mem : signal is 2048;

The syntax for setting these attributes in HDL is the same as the syntax for other
synthesis attributes, as shown in Synthesis Attributes on page 140.

Related Information

Synthesis Attributes on page 140

3.5.7. RAM Style Attribute—For Shift Registers Inference

The RAM style attribute for shift register allows you to use the RAM style attribute for
shift registers, just as you use them for RAM or ROMs. The Intel Quartus Prime
Synthesis uses the RAM style attribute during shift register inference. If synthesis
infers the shift register to RAM, it will be sent to the requested RAM block type. Shift
registers are merged only if the RAM style attributes are compatible. If the RAM style
is set to logic, a shift register does not get inferred to RAM.

Table 40. Setting the RAM Style Attribute for Shift Registers
HDL Code
Verilog (* ramstyle = "mlab™ *)reg [N-1:0] sr;
continued...
Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

166

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
683283 | 2018.09.24 ®

HDL Code

VHDL attribute ramstyle : string;attribute ramstyle of sr : signal is ""M20K";

3.5.8. Disabling Add Pass-Through Logic to Inferred RAMs no_rw_check
Attribute

Use the no_rw_check value for the ramstyle attribute, or disable the Add Pass-
Through Logic to Inferred RAMs logic option assignment to indicate that your
design does not depend on the behavior of the inferred RAM, when there are reads
and writes to the same address in the same clock cycle. If you specify the attribute or
disbale the logic option, the Intel Quartus Prime software chooses a read-during-write
behavior instead of the read-during-write behavior of your HDL source code.

You disable or edit the attributes of this option by modifying the
add_pass_through_logic_to_inferred_rams option in the Intel Quartus
Prime Settings File (.qsf). There is no corresponding GUI setting for this option.

Sometimes, you must map an inferred RAM into regular logic cells because the
inferred RAM has a read-during-write behavior that the TriMatrix memory blocks in
your target device do not support. In other cases, the Intel Quartus Prime software
must insert extra logic to mimic read-during-write behavior of the HDL source to
increase the area of your design and potentially reduce its performance. In some of
these cases, you can use the attribute to specify that the software can implement the
RAM directly in a TriMatrix memory block without using logic. You can also use the
attribute to prevent a warning message for dual-clock RAMs in the case that the
inferred behavior in the device does not exactly match the read-during-write
conditions described in the HDL code.

To set the Add Pass-Through Logic to Inferred RAMs logic option with the Intel
Quartus Prime software, click Assignments 0 Settings 0 Compiler Settings O
Advanced Settings (Synthesis).

These examples use two addresses and normally require extra logic after the RAM to
ensure that the read-during-write conditions in the device match the HDL code. If your
design does not require a defined read-during-write condition, the extra logic is not
necessary. With the no_rw_check attribute, Intel Quartus Prime Integrated Synthesis
does not generate the extra logic.

Table 41. Inferred RAM Using no_rw _check Attribute

HDL Code

Verilog HDL module ram_infer (q, wa, ra, d, we, clk);

output [7:0] q;

input [7:0] d;

input [6:0] wa;

input [6:0] ra;

input we, clk;

reg [6:0] read_add;

(* ramstyle = "no_rw_check™ *) reg [7:0] mem [127:0];

always @ (posedge clk) begin
it (we)

mem[wa] <= d;

read_add <= ra;

end

assign gq = mem[read_add];

endmodule

continued...

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

167

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
® 683283 | 2018.09.24

HDL

Code

VHDL

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY ram IS
PORT (
clock: IN STD_LOGIC;
data: IN STD_LOGIC_VECTOR (2 DOWNTO 0);
write_address: IN INTEGER RANGE O to 31;
read_address: IN INTEGER RANGE O to 31;
we: IN STD_LOGIC;
g: OUT STD_LOGIC_VECTOR (2 DOWNTO 0) »e
END ram;
ARCHITECTURE rtl OF ram IS
TYPE MEM 1S ARRAY(O TO 31) OF STD_LOGIC_VECTOR(2 DOWNTO 0);
SIGNAL ram_block: MEM;
ATTRIBUTE ramstyle : string;
ATTRIBUTE ramstyle of ram_block : signal is "no_rw_check™";
SIGNAL read_address_reg: INTEGER RANGE O to 31;
BEGIN
PROCESS (clock)
BEGIN
IF (clock"event AND clock = "1%) THEN
IF (we = "1") THEN
ram_block(write_address) <= data;
END IF;
read_address_reg <= read_address;
END IF;
END PROCESS;
q <= ram_block(read_address_reg);
END rtl;

Note:

Table 42.

You can use a ramstyle attribute with the MLAB value, so that the Intel Quartus Prime
software can infer a small RAM block and place it in an MLAB.

You can use this attribute in cases in which some asynchronous RAM blocks might be
coded with read-during-write behavior that does not match the Stratix IV and

Stratix V architectures. Thus, the device behavior would not exactly match the
behavior that the code describes. If the difference in behavior is acceptable in your
design, use the ramstyle attribute with the no_rw_check value to specify that the
software should not check the read-during-write behavior when inferring the RAM.
When you set this attribute, Intel Quartus Prime Integrated Synthesis allows the
behavior of the output to differ when the asynchronous read occurs on an address that
had a write on the most recent clock edge. That is, the functional HDL simulation
results do not match the hardware behavior if you write to an address that is being
read. To include these attributes, set the value of the ramstyle attribute to MLAB,
no_rw_check.

These examples show the method of setting two values to the ramstyle attribute
with a small asynchronous RAM block, with the ramstyle synthesis attribute set, so
that the software can implement the memory in the MLAB memory block and so that
the read-during-write behavior is not important. Without the attribute, this design
requires 512 registers and 240 ALUTs. With the attribute, the design requires eight
memory ALUTs and only 15 registers.

Inferred RAM Using no_rw check and MLAB Attributes

HDL

Code

Verilog HDL

module async_ram (
input [5:0] addr,
input [7:0] data_in,
input clk,
input write,
output [7:0] data_out);
(* ramstyle = "MLAB, no_rw_check™ *) reg [7:0] mem[0:63];
assign data_out = mem[addr];
always @ (posedge clk)
begin

continued...

Intel Quartus Prime Standard Edition User Guide: Design Compilation D Send Feedback

168

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
683283 | 2018.09.24

intel.

HDL Code
if (write)
mem[addr] = data_in;
end
endmodule
VHDL LIBRARY ieee;

USE ieee.std_logic_1164.ALL;
ENTITY ram IS
PORT (
clock: IN STD_LOGIC;
data: IN STD_LOGIC_VECTOR (2 DOWNTO 0);
write_address: IN INTEGER RANGE O to 31;
read_address: IN INTEGER RANGE O to 31;
we: IN STD_LOGIC;
g: OUT STD_LOGIC_VECTOR (2 DOWNTO 0));
END ram;
ARCHITECTURE rtl OF ram IS
TYPE MEM 1S ARRAY(O TO 31) OF STD_LOGIC_VECTOR(2 DOWNTO 0);
SIGNAL ram_block: MEM;
ATTRIBUTE ramstyle : string;

SIGNAL read_address_reg: INTEGER RANGE O to 31;
BEGIN
PROCESS (clock)
BEGIN
IF (clock®event AND clock = "1") THEN
IF (we = "17) THEN
ram_block(write_address) <= data;
END IF;
read_address_reg <= read_address;
END IF;
END PROCESS;
q <= ram_block(read_address_reg);
END rtl;

ATTRIBUTE ramstyle of ram_block : signal is "MLAB , no_rw_check™;

Related Information
Add Pass-Through Logic to Inferred RAMs logic option

For more information about the Add Pass-Through Logic to Inferred RAMs logic

option and the supported devices

3.5.9. RAM Initialization File—for Inferred Memory

The ram_init_File attribute specifies the initial contents of an inferred memory
with a .mif. The attribute takes a string value containing the name of the RAM

initialization file.
The ram_init_file attribute is supported for ROM too.

Table 43. Applying a ram_init_file Attribute

HDL Code

Verilog-1995 reg [7:0] mem[0:255] /* synthesis ram_init_file
=" my_init_file.mif" */;

Verilog-2001 * ram_init_file = "my_init_file.mif" *) reg [7:0] mem[0:255];

continued...

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

169

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_add_pass_through_logic_to_inferred_rams.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
® 683283 | 2018.09.24

HDL

Code

VHDL(6)

type mem_t is array(0 to 255) of unsigned(7 downto 0);
signal ram : mem_t;

attribute ram_init_file : string;

attribute ram_init_file of ram :

signal is "my_init_file.mif";

3.5.10. Multiplier Style—for Inferred Multipliers

Note:

Table 44.

The multstyle attribute specifies the implementation style for multiplication
operations (*) in your HDL source code. You can use this attribute to specify whether
you prefer the Compiler to implement a multiplication operation in general logic or
dedicated hardware, if available in the target device.

The multstyle attribute takes a string value of "logic' or ""dsp"’, indicating a
preferred implementation in logic or in dedicated hardware, respectively. In Verilog
HDL, apply the attribute to a module declaration, a variable declaration, or a specific
binary expression that contains the * operator. In VHDL, apply the synthesis attribute
to a signal, variable, entity, or architecture.

Specifying a multstyle of ""dsp" does not guarantee that the Intel Quartus Prime
software can implement a multiplication in dedicated DSP hardware. The final
implementation depends on several conditions, including the availability of dedicated
hardware in the target device, the size of the operands, and whether or not one or
both operands are constant.

In addition to multstyle, the Intel Quartus Prime software supports the
syn_multstyle attribute name for compatibility with other synthesis tools.

When applied to a Verilog HDL module declaration, the attribute specifies the default
implementation style for all instances of the * operator in the module. For example, in
the following code examples, the multstyle attribute directs the Intel Quartus Prime
software to implement all multiplications inside module my_module in the dedicated
multiplication hardware.

Applying a mul t st yl e Attribute to a Module Declaration

HDL

Code

Verilog-1995

module my_module (...) /* synthesis multstyle = "dsp" */;

Verilog-2001

(* multstyle = "dsp" *) module my_module(...);

When applied to a Verilog HDL variable declaration, the attribute specifies the
implementation style for a multiplication operator, which has a result directly assigned
to the variable. The attribute overrides the multstyle attribute with the enclosing
module, if present.

(6) You can also initialize the contents of an inferred memory by specifying a default value for the
corresponding signal. In Verilog HDL, you can use an initial block to specify the memory
contents. Intel Quartus Prime Integrated Synthesis automatically converts the default value
into a .mif for the inferred RAM.

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

170

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
683283 | 2018.09.24 ®

In these examples, the multstyle attribute applied to variable result directs the
Intel Quartus Prime software to implement a * b in logic rather than the dedicated
hardware.

Table 45. Applying a nul t st yl e Attribute to a Variable Declaration
HDL Code
Verilog-2001 wire [8:0] a, b:
* multstyle = "logic" *) wire [17:0] result;
assign result = a * b; //Multiplication must be
//directly assigned to result
Verilog-1995 wire [8:0] a, b;
wire [17:0] result /* synthesis multstyle = "logic" */;
assign result = a * b; //Multiplication must be
//directly assigned to result
When applied directly to a binary expression that contains the * operator, the attribute
specifies the implementation style for that specific operator alone and overrides any
multstyle attribute with the target variable or enclosing module.
In this example, the multstyle attribute indicates that you must implementa * b
in the dedicated hardware.
Table 46. Applying a nul t st yl e Attribute to a Binary Expression
HDL Code
Verilog-2001 wire [8:0] a, b;
wire [17:0] result;
assign result = a * (* multstyle = "dsp™ *) b;
Note: You cannot use Verilog-1995 attribute syntax to apply the multstyle attribute to a
binary expression.
When applied to a VHDL entity or architecture, the attribute specifies the default
implementation style for all instances of the * operator in the entity or architecture.
In this example, the multstyle attribute directs the Intel Quartus Prime software to
use dedicated hardware, if possible, for all multiplications inside architecture rtl of
entity my_entity.
Table 47. Applying a nul t st yl e Attribute to an Architecture
HDL Code
VHDL architecture rtl of my_entity is
attribute multstyle : string;
attribute multstyle of rtl : architecture is "dsp”;
begin
When applied to a VHDL signal or variable, the attribute specifies the implementation
style for all instances of the * operator, which has a result directly assigned to the
signal or variable. The attribute overrides the multstyle attribute with the enclosing
entity or architecture, if present.
D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

171

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
® 683283 | 2018.09.24

Table 48.

In this example, the multstyle attribute associated with signal result directs the
Intel Quartus Prime software to implement a * b in logic rather than the dedicated
hardware.

Applying a mul t st yl e Attribute to a Signal or Variable

HDL

Code

VHDL

signal a, b : unsigned(8 downto 0);
signal result : unsigned(17 downto 0);

attribute multstyle : string;
attribute multstyle of result : signal is "logic";
result <= a * b;

3.5.11. Full Case Attribute

A Verilog HDL case statement is full when its case items cover all possible binary
values of the case expression or when a default case statement is present. A

ful l_case attribute attached to a case statement header that is not full forces
synthesis to treat the unspecified states as a don’t care value. VHDL case statements
must be full, so the attribute does not apply to VHDL.

Using this attribute on a case statement that is not full allows you to avoid the latch
inference problems.

Note: Latches have limited support in formal verification tools. Do not infer latches
unintentionally, for example, through an incomplete case statement when using formal
verification.

Formal verification tools support the ful l _case synthesis attribute (with limited
support for attribute syntax, as described in Synthesis Attributes on page 140).
Using the Ful l _case attribute might cause a simulation mismatch between the
Verilog HDL functional and the post-Intel Quartus Prime simulation because unknown
case statement cases can still function as latches during functional simulation. For
example, a simulation mismatch can occur with the code in Table 49 on page 172
when sel is 2"b11 because a functional HDL simulation output behaves as a latch
and the Intel Quartus Prime simulation output behaves as a don’t care value.

Note: Altera recommends making the case statement “full” in your regular HDL code,
instead of using the ful I _case attribute.

Table 49. A full_case Attribute
The case statement in this example is not full because you do not specify some sel binary values. Because
you use the Ful l_case attribute, synthesis treats the output as “don’t care” when the sel input is 2"b11.

HDL Code
Verilog HDL module full_case (a, sel, y);
input [3:0] a;
input [1:0] sel;
output y;
reg y;
always @ (a or sel)
case (sel) // synthesis full_case
2°b00: y=a[0];
2"b01: y=a[1l];
2"b10: y=a[2];
endcase
endmodule
Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

172

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
683283 | 2018.09.24 ®

Table 50.

Verilog-2001 syntax also accepts the statements in Table 50 on page 173 in the case
header instead of the comment form as shown in Table 49 on page 172.

Syntax for the full_case Attribute

HDL

Syntax

Verilog-2001

(* full_case *) case (sel)

Related Information
Synthesis Attributes on page 140

3.5.12. Parallel Case

Note:

Table 51.

The paral lel_case attribute indicates that you must consider a Verilog HDL case
statement as parallel; that is, you can match only one case item at a time. Case items
in Verilog HDL case statements might overlap. To resolve multiple matching case
items, the Verilog HDL language defines a priority among case items in which the case
statement always executes the first case item that matches the case expression value.
By default, the Intel Quartus Prime software implements the extra logic necessary to
satisfy this priority relationship.

Attaching a parallel_case attribute to a case statement header allows the Intel
Quartus Prime software to consider its case items as inherently parallel; that is, at
most one case item matches the case expression value. Parallel case items simplify
the generated logic.

In VHDL, the individual choices in a case statement might not overlap, so they are
always parallel and this attribute does not apply.

Altera recommends that you use this attribute only when the case statement is truly
parallel. If you use the attribute in any other situation, the generated logic does not
match the functional simulation behavior of the Verilog HDL.

Altera recommends that you avoid using the parallel_case attribute, because you
may mismatch the Verilog HDL functional and the post-Intel Quartus Prime simulation.

If you specify SystemVerilog-2005 as the supported Verilog HDL version for your
design, you can use the SystemVerilog keyword unique to achieve the same result as
the parallel_case directive without causing simulation mismatches.

This example shows a casez statement with overlapping case items. In functional
HDL simulation, the software prioritizes the three case items by the bits in sel. For
example, sel[2] takes priority over sel[1], which takes priority over sel[0].
However, the synthesized design can simulate differently because the

parallel _case attribute eliminates this priority. If more than one bit of sel is high,
more than one output (a, b, or ¢) is high as well, a situation that cannot occur in
functional HDL simulation.

A paral | el _case Attribute

HDL

Code

Verilog HDL

module parallel_case (sel, a, b, c);
input [2:0] sel;
output a, b, c;

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

173

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
® 683283 | 2018.09.24

HDL

Code

reg a, b, c;
always @ (sel)
begin
{a, b, c} = 3"b0;
casez (sel) // synthesis parallel_case
3"b1??: a M
3"b?1?: b
3"b??1: c
endcase

nn
[y
.
joiey
ey

end
endmodule

Table 52.

Verilog-2001 Syntax

Verilog-2001 syntax also accepts the statements as shown in the following table in the case (or casez)
header instead of the comment form, as shown in Table 51 on page 173.

HDL

Syntax

Verilog-2001

(* parallel_case *) casez (sel)

3.5.13. Translate Off and On / Synthesis Off and On

Table 53.

The translate off and translate_on synthesis directives indicate whether the
Intel Quartus Prime software or a third-party synthesis tool should compile a portion
of HDL code that is not relevant for synthesis. The translate_ofTf directive marks
the beginning of code that the synthesis tool should ignore; the translate_on
directive indicates that synthesis should resume. You can also use the synthesis_on
and synthesis_off directives as a synonym for translate on and off.

You can use these directives to indicate a portion of code for simulation only. The
synthesis tool reads synthesis-specific directives and processes them during synthesis;
however, third-party simulation tools read the directives as comments and ignore
them.

These examples show these directives.

Translate Off and On

HDL Code

Verilog HDL

// synthesis translate_off

parameter tpd = 2; // Delay for simulation
#tpd;

// synthesis translate_on

VHDL

-- synthesis translate_off
use std.textio.all;
-- synthesis translate_on

VHDL 2008

/* synthesis translate_off */
use std.textio.all;
/* synthesis translate_on */

If you want to ignore only a portion of code in Intel Quartus Prime Integrated
Synthesis, you can use the Altera-specific attribute keyword altera. For example,
use the // altera translate off and // altera translate_on directives to
direct Intel Quartus Prime Integrated Synthesis to ignore a portion of code that you
intend only for other synthesis tools.

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

174

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
683283 | 2018.09.24 ®

3.5.14. Ignore translate_off and synthesis_off Directives

The Ignore translate_off and synthesis_off Directives logic option directs Intel
Quartus Prime Integrated Synthesis to ignore the translate_ off and
synthesis_off directives. Turning on this logic option allows you to compile code
that you want the third-party synthesis tools to ignore; for example, IP core
declarations that the other tools treat as black boxes but the Intel Quartus Prime
software can compile. To set the Ignore translate_off and synthesis_ off
Directives logic option, click Assignments [0 Settings 0 Compiler Settings U
Advanced Settings (Synthesis).

Related Information

Ignore translate_off and synthesis_off Directives logic option
For more information about the Ignore translate_off and synthesis_ off
Directives logic option and the supported devices

3.5.15. Read Comments as HDL

The read_comments_as_ HDL synthesis directive indicates that the Intel Quartus
Prime software should compile a portion of HDL code that you commented out. This
directive allows you to comment out portions of HDL source code that are not relevant
for simulation, while instructing the Intel Quartus Prime software to read and
synthesize that same source code. Setting the read_comments_as HDL directive to
on indicates the beginning of commented code that the synthesis tool should read;
setting the read_comments_as_HDL directive to offF indicates the end of the code.

Note: You can use this directive with translate_off and translate_on to create one
HDL source file that includes an IP core instantiation for synthesis and a behavioral
description for simulation.

Formal verification tools do not support the read_comments_as_HDL directive
because the tools do not recognize the directive.

In these examples, the Compiler synthesizes the commented code enclosed by
read_comments_as_HDL because the directive is visible to the Intel Quartus Prime
Compiler. VHDL 2008 allows block comments, which comments are also supported for
synthesis directives.

Note: Because synthesis directives are case sensitive in Verilog HDL, you must match the
case of the directive, as shown in the following examples.

Table 54. Read Comments as HDL

HDL Code

Verilog HDL // synthesis read_comments_as_HDL on

// my_rom Ipm_rom (-address (address),
7/ .data (data));
// synthesis read_comments_as_HDL off

VHDL -- synthesis read_comments_as_HDL on

-- my_rom : entity Ipm_rom

-- port map (

- address => address,

-- data => data,)

-- synthesis read_comments_as_HDL off

continued...

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

175

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_ignore_translate_off.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
® 683283 | 2018.09.24

HDL

Code

VHDL 2008

/* synthesis read_comments_as_HDL on */
/* my_rom : entity lpm_rom

port map (

address => address,

data => data,); */

synthesis read_comments_as_HDL off */

3.5.16. Use 1/0 Flipflops

Table 55.

The useioff attribute directs the Intel Quartus Prime software to implement input,
output, and output enable flipflops (or registers) in I/0 cells that have fast, direct
connections to an I/O pin, when possible. To improve I/O performance by minimizing
setup, clock-to-output, and clock-to-output enable times, you can apply the useioff
synthesis attribute. The Fast Input Register, Fast Output Register, and Fast
Output Enable Register logic options support this synthesis attribute. You can also
set this synthesis attribute in the Assignment Editor.

The useioff synthesis attribute takes a boolean value. You can apply the value only
to the port declarations of a top-level Verilog HDL module or VHDL entity (it is ignored
if applied elsewhere). Setting the value to 1 (Verilog HDL) or TRUE (VHDL) instructs
the Intel Quartus Prime software to pack registers into I/O cells. Setting the value to O
(Verilog HDL) or FALSE (VHDL) prevents register packing into I/0 cells.

In Table 55 on page 176 and Table 56 on page 176, the useioff synthesis attribute
directs the Intel Quartus Prime software to implement the a_reg, b_reg, and 0_reg
registers in the I/0 cells corresponding to the a, b, and o ports, respectively.

Verilog HDL Code: The usei of f Attribute

HDL

Code

Verilog HDL

module top_level(clk, a, b, 0);
input clk;
input [1:0] a, b /* synthesis useioff = 1 */;
output [2:0] o /* synthesis useioff = 1 */;
reg [1:0] a_reg, b_reg;
reg [2:0] o_reg;
always @ (posedge clk)
begin
a_reg <= a;
b_reg <= b;
o_reg <= a_reg + b_reg;
end
assign o = o_reg;
endmodule

Table 56.

Table 56 on page 176 and Table 57 on page 177 show that the Verilog-2001 syntax
also accepts the type of statements instead of the comment form in Table 55 on page
176.

Verilog-2001 Code: the useioff Attribute

HDL

Code

Verilog-2001

(* useioff = 1 *) input [1:0] a, b;
(* useioff = 1 *) output [2:0] o;

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

176

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
683283 | 2018.09.24 ®

Table 57.

VHDL Code: the useioff Attribute

HDL

Code

VHDL

library ieee;

use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity useioff_example is

port (
clk : in std_logic;
a, b : in unsigned(1 downto 0);
o : out unsigned(1l downto 0));
attribute useioff : boolean;
attribute useioff of a : signal is true;
attribute useioff of b : signal is true;
attribute useioff of o : signal is true;
end useioff_example;
architecture rtl of useioff_example is
signal o_reg, a_reg, b_reg : unsigned(l1 downto 0);
begin
process(clk)

if (clk = "1 AND clk"event) then
a_reg <= a;
b_reg <= b;
o_reg <= a_reg + b_reg;
end if;
end process;
0 <= o_reg;
end rtl;

3.5.17. Specifying Pin Locations with chip_pin

Note:

Table 58.

The chip_pin attribute allows you to assign pin locations in your HDL source. You
can use the attribute only on the ports of the top-level entity or module in your
design. You can assign pins only to single-bit or one-dimensional bus ports in your
design.

For single-bit ports, the value of the chip_pin attribute is the name of the pin on the
target device, as specified by the pin table of the device.

In addition to the chip_pin attribute, the Intel Quartus Prime software supports the
altera_chip_pin_Ic attribute name for compatibility with other synthesis tools.
When using this attribute in other synthesis tools, some older device families require
an “@"” symbol in front of each pin assignment. In the Intel Quartus Prime software,
the "@” is optional.

Applying Chip Pin to a Single Pin

These examples in this table show different ways of assigning my_pinl to Pin C1 and my_pin2 to Pin 4 on a
different target device.

HDL

Code

Verilog-1995 input my_pinl /* synthesis chip_pin = "C1" */;

input my_pin2 /* synthesis altera_chip_pin_Ilc = "@4" */;

Verilog-2001 | (* altera_chip_pin_lIc = "@4" *) input my_pin2;

(* chip_pin = "C1"™ *) input my_pinl;

VHDL entity my_entity is

port(my_pinl: in std_logic; my pin2: in std_logic;.);
end my_entity;
attribute chip_pin : string;
attribute altera_chip_pin_Ic : string;
attribute chip_pin of my_pinl : signal is "C1";
attribute altera_chip_pin_Ilc of my pin2 : signal is "@4";

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

177

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
® 683283 | 2018.09.24

For bus I/0 ports, the value of the chip pin attribute is a comma-delimited list of pin
assignments. The order in which you declare the range of the port determines the
mapping of assignments to individual bits in the port. To leave a bit unassigned, leave
its corresponding pin assignment blank.

Table 59. Applying Chip Pin to a Bus of Pins
The example in this table assigns my_pin[2] to Pin_4, my_pin[1] to Pin_5, and my_pin[0] to Pin_6.
HDL Code
Verilog-1995 input [2:0] my_pin /* synthesis chip_pin = "4, 5, 6™ */;
Table 60. Applying Chip Pin to Part of a Bus
The example in this table reverses the order of the signals in the bus, assigning my_pin[0] to Pin_4 and
my_pin[2] to Pin_6 but leaves my_pin[1] unassigned.
HDL Code
Verilog-1995 input [0:2] my_pin /* synthesis chip_pin = "4, ,6" */;
Table 61. Applying Chip Pin to Part of a Bus of Pins
The example in this table assigns my_pin[2] to Pin 4 and my_pin[0] to Pin 6, but leaves my_pin[1]
unassigned.
HDL Code
VHDL entity my_entity is
port(my_pin: in std_logic_vector(2 downto 0);..);
end my_entity;
attribute chip_pin of my_pin: signal is "4, , 6";
Table 62. VHDL and Verilog-2001 Examples: Assighing Pin Location and I/0 Standard
HDL Code
VHDL attribute altera_chip_pin_Ic: string;
attribute altera_attribute: string;
attribute altera_chip_pin_Ic of clk: signal is "B13";
attribute altera_attribute of clk:signal is "-name 10_STANDARD ""'3.3-V LVCMOS"**** H
Verilog-2001 (* altera_attribute = "-name 10_STANDARD \'"3.3-V LVCMOS\"** *)(* chip_pin = "L5" *)input clk;
(* altera_attribute = "-pame 10_STANDARD LVDS"™ *)(* chip_pin = "L4"™ *)input sel;
output [3:0] data_o, input [3:0] data_i);

3.5.18. Using altera_attribute to Set Intel Quartus Prime Logic Options

Intel Quartus Prim

178

The altera_attribute attribute allows you to apply Intel Quartus Prime logic
options and assignments to an object in your HDL source code. You can set this
attribute on an entity, architecture, instance, register, RAM block, or I/O pin. You
cannot set it on an arbitrary combinational node such as a net. With
altera_attribute, you can control synthesis options from your HDL source even
when the options lack a specific HDL synthesis attribute. You can also use this
attribute to pass entity-level settings and assignments to phases of the Compiler flow
that follow Analysis & Synthesis, such as Fitting.

Assignments or settings made through the Intel Quartus Prime software, the .qsf, or
the Tcl interface take precedence over assignments or settings made with the
altera_attribute synthesis attribute in your HDL code.

e Standard Edition User Guide: Design Compilation D send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
683283 | 2018.09.24

Table 63.

intel.

The attribute value is a single string containing a list of .qsf variable assignments
separated by semicolons:

-name <vari abl e_1> <val ue_1>;-name <vari abl e_2> <val ue_2>[;..]

If the Intel Quartus Prime option or assignment includes a target, source, and section
tag, you must use the syntax in this example for each .qsf variable assignment:

-name <vari abl e> <val ue>
-from <source> -to <target> -section_id <section>

This example shows the syntax for the full attribute value, including the optional
target, source, and section tags for two different .qsf assignments:

" —name <vari abl e_1> <val ue_1> [-from <source_1>] [-to <target_ 1>] [-section_id
\ <section_1>]; -name <vari abl e_2> <val ue_2> [-from <source_2>] [-to <target_2>]
\

[-section_id <section_2>] *

Example Usage

If the assigned value of a variable is a string of text, you must use escaped quotes around the value in Verilog
HDL or double-quotes in VHDL:

HDL Code

Assigned Value of a Variable in Verilog HDL (With
Nonexistent Variable and Value Terms)

"VARIABLE_NAME \"STRING_VALUE\"**

Assigned Value of a Variable in VHDL (With Nonexistent
Variable and Value Terms)

“VARIABLE_NAME ***'STRING_VALUE""""

To find the .qsf variable name or value corresponding to a specific Intel Quartus Prime
option or assignment, you can set the option setting or assignment in the Intel
Quartus Prime software, and then make the changes in the .qgsf.

Applying altera_attribute to an Instance

These examples use altera_attribute to set the power-up level of an inferred
register.

Table 64. Applying altera_attribute to an Instance
These examples use altera_attribute to set the power-up level of an inferred register.
HDL Code
Verilog-1995 reg my_reg /* synthesis altera_attribute = "-name POWER_UP_LEVEL HIGH" */;
Verilog-2001 (* altera_attribute = “-name POWER_UP_LEVEL HIGH" *) reg my_reg;
VHDL signal my_reg : std_logic;
attribute altera_attribute : string;
attribute altera_attribute of my_reg: signal is *-name POWER_UP_LEVEL HIGH";
Note: For inferred instances, you cannot apply the attribute to the instance directly.
Therefore, you must apply the attribute to one of the output nets of the instance. The
Intel Quartus Prime software automatically moves the attribute to the inferred
instance.
D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

179

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
® 683283 | 2018.09.24

Applying altera_attribute to an Entity

These examples use the altera_attribute to disable the Auto Shift Register
Replacement synthesis option for an entity. To apply the Altera Attribute to a VHDL
entity, you must set the attribute on its architecture rather than on the entity itself.

Table 65. Applying altera_attribute to an Entity
HDL Code
Verilog-1995 module my_entity(.) /* synthesis altera_attribute = "-name AUTO_SHIFT_REGISTER _RECOGNITION OFF"
*/;
Verilog-2001 (* altera_attribute = “-name AUTO_SHIFT_REGISTER RECOGNITION OFF" *) module my_entity(.) ;
VHDL entity my _entity is
-- Declare generics and ports
end my_entity;
architecture rtl of my_entity is
attribute altera_attribute : string;
-- Attribute set on architecture, not entity
attribute altera_attribute of rtl: architecture is "-name AUTO_SHIFT_REGISTER_RECOGNITION OFF";
begin
-- The architecture body
end rtl;
Applying altera_attribute with the -to Option
You can also use altera_attribute for more complex assignments that have more
than one instance. In Table 66 on page 180, the altera_attribute cuts all timing
paths from regl to reg2, equivalent to this Tcl or .qsf command, as shown in the
example below:
set_instance_assignment -name CUT ON -from regl -to reg2
Table 66. Applying altera_attribute with the -to Option
HDL Code
Verilog-1995 reg reg2;
reg regl /* synthesis altera_attribute = "-name CUT ON -to reg2" */;
Verilog-2001 reg reg2;
and (* altera_attribute = "-name CUT ON -to reg2" *) reg regl;

SystemVerilog

VHDL signal regl, reg2 : std_logic;

attribute altera_attribute: string;

attribute altera_attribute of regl : signal is "-name CUT ON -to reg2";
You can specify either the -to option or the -from option in a single
altera_attribute; Integrated Synthesis automatically sets the remaining option to
the target of the altera_attribute. You can also specify wildcards for either
option. For example, if you specify “*” for the —to option instead of reg2 in these
examples, the Intel Quartus Prime software cuts all timing paths from regl to every
other register in this design entity.
You can use the altera_attribute only for entity-level settings, and the
assignments (including wildcards) apply only to the current entity.

Intel Quartus Prime Standard Edition User Guide: Design Compilation D Send Feedback

180

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
683283 | 2018.09.24 ®

Related Information
e Synthesis Attributes on page 140

e Intel Quartus Prime Settings File Manual
Lists all variable names

3.6. Analyzing Synthesis Results

After performing synthesis, you can check your synthesis results in the Analysis &
Synthesis section of the Compilation Report and the Project Navigator.

3.6.1. Analysis & Synthesis Section of the Compilation Report

The Compilation Report, which provides a summary of results for the project, appears
after a successful compilation. After Analysis & Synthesis, the Summary section of the
Compilation Report provides a summary of utilization based on synthesis data, before
Fitter optimizations have occurred. The Analysis & Synthesis section lists synthesis-
specific information.

Analysis & Synthesis includes various report sections, including a list of the source
files read for the project, the resource utilization by entity after synthesis, and
information about state machines, latches, optimization results, and parameter
settings.

Related Information

Analysis Synthesis Summary Reports
For more information about each report section

3.6.2. Project Navigator

The Hierarchy tab of the Project Navigator provides a view of the project hierarchy
and a summary of resource and device information about the current project. After
Analysis & Synthesis, before the Fitter begins, the Project Navigator provides a
summary of utilization based on synthesis data, before Fitter optimizations have
occurred.

If an entity in the Hierarchy tab contains parameter settings, a tooltip displays the
settings when you hold the pointer over the entity.

3.6.2.1. Upgrade IP Components Dialog Box

In the Intel Quartus Prime software version 12.1 SP1 and later, the Upgrade IP
Components dialog box allows you to upgrade all outdated IP in your project after
you move to a newer version of the Intel Quartus Prime software.

Related Information

Upgrade IP Components dialog box
For more information about the Upgrade IP Components dialog box

3.7. Analyzing and Controlling Synthesis Messages

You can analyze the generated messages during synthesis and control which
messages appear during compilation.

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

181

http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://quartushelp.altera.com/current/index.htm#report/rpt/rpt_file_analysis_summary.htm
http://quartushelp.altera.com/current/index.htm#global/pjn/pjn_com_regenerate_ip.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
® 683283 | 2018.09.24

3.7.1. Intel Quartus Prime Messages

The messages that appear during Analysis & Synthesis describe many of the
optimizations during the synthesis stage, and provide information about how the
software interprets your design. Altera recommends checking the messages to analyze
Critical Warnings and Warnings, because these messages can relate to important
design problems. Read the Info messages to get more information about how the
software processes your design.

The software groups the messages by following types: Info, Warning, Critical
Warning, and Error.

You can specify the type of Analysis & Synthesis messages that you want to view by
selecting the Analysis & Synthesis Message Level option. To specify the display
level, click Assignments [0 Settings 0 Compiler Settings [Advanced Settings
(Synthesis)

Related Information

About the Messages Window
For more information about the Messages window and message suppression

3.7.2. VHDL and Verilog HDL Messages

The Intel Quartus Prime software issues a variety of messages when it is analyzing
and elaborating the Verilog HDL and VHDL files in your design. These HDL messages
are a subset of all Intel Quartus Prime messages that help you identify potential
problems early in the design process.

HDL messages fall into the following categories:
o Info message—Ilists a property of your design.

e Warning message—indicates a potential problem in your design. Potential
problems come from a variety of sources, including typos, inappropriate design
practices, or the functional limitations of your target device. Though HDL warning
messages do not always identify actual problems, Altera recommends
investigating code that generates an HDL warning. Otherwise, the synthesized
behavior of your design might not match your original intent or its simulated
behavior.

e Error message—indicates an actual problem with your design. Your HDL code can
be invalid due to a syntax or semantic error, or it might not be synthesizable as
written.

In this example, the sensitivity list contains multiple copies of the variable i. While
the Verilog HDL language does not prohibit duplicate entries in a sensitivity list, it is
clear that this design has a typing error: Variable j should be listed on the sensitivity
list to avoid a possible simulation or synthesis mismatch.

//dup.v
module dup(input i, input j, output reg 0);
always @ (i or i)
o=1&j;
endmodule

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

182

http://quartushelp.altera.com/current/index.htm#report/msw/msw_com_msw.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
683283 | 2018.09.24 ®

When processing the HDL code, the Intel Quartus Prime software generates the
following warning message.

Warning: (10276) Verilog HDL sensitivity list warning at dup.v(2): sensitivity
list contains multiple entries for "i".

In Verilog HDL, variable names are case sensitive, so the variables my_reg and
MY_REG below are two different variables. However, declaring variables that have
names in different cases is confusing, especially if you use VHDL, in which variables
are not case sensitive.

// namecase.v

module namecase (input i, output 0);
reg my_reg;
reg MY_REG;
assign o = i;

endmodule

When processing the HDL code, the Intel Quartus Prime software generates the
following informational message:

Info: (10281) Verilog HDL information at namecase.v(3): variable name "MY_REG"
and variable name "my_reg" should not differ only in case.

In addition, the Intel Quartus Prime software generates additional HDL info messages
to inform you that this small design does not use neither my_reg nor MY_REG:

Info: (10035) Verilog HDL or VHDL information at namecase.v(3): object "my_reg"
declared but not used
Info: (10035) Verilog HDL or VHDL information at namecase.v(4): object "MY_REG"
declared but not used

The Intel Quartus Prime software allows you to control how many HDL messages you
can view during the Analysis & Elaboration of your design files. You can set the HDL
Message Level to enable or disable groups of HDL messages, or you can enable or
disable specific messages.

Related Information

Synthesis Directives on page 142
For more information about synthesis directives and their syntax

3.7.2.1. Setting the HDL Message Level

The HDL Message Level specifies the types of messages that the Intel Quartus Prime
software displays when it is analyzing and elaborating your design files.

Table 67. HDL Info Message Level
Level Purpose Description
Levell High-severity messages only | If you want to view only the HDL messages that identify likely
problems with your design, select Levell. When you select Levell, the
Intel Quartus Prime software issues a message only if there is an
actual problem with your design.
Level2 High-severity and medium- If you want to view additional HDL messages that identify possible
severity messages problems with your design, select Level2. Level2 is the default setting.
Level3 All messages, including low- | If you want to view all HDL info and warning messages, select Level3.
severity messages This level includes extra “"LINT” messages that suggest changes to
improve the style of your HDL code.
D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

183

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
® 683283 | 2018.09.24

You must address all issues reported at the Levell setting. The default HDL message
level is Level2.

To set the HDL Message Level in the Intel Quartus Prime software, follow these steps:

1. Click Assignments [Settings 0 Compiler Settings 0 Advanced Settings
(Synthesis)

2. Set the necessary message level from the pull-down menu in the HDL Message
Level list, and then click OK.

You can override this default setting in a source file with the message_level
synthesis directive, which takes the values levell, level2, and level3, as
shown in the following table.

Table 68. HDL Examples of message_level Directive
HDL Code
Verilog HDL // altera message_level levell
or
/* altera message_level level3 */
VHDL -- altera message_level level2

A message_level synthesis directive remains effective until the end of a file or
until the next message_level directive. In VHDL, you can use the
message_level synthesis directive to set the HDL Message Level for entities and
architectures, but not for other design units. An HDL Message Level for an entity
applies to its architectures, unless overridden by another message_level
directive. In Verilog HDL, you can use the message_level directive to set the
HDL Message Level for a module.

3.7.2.2. Enabling or Disabling Specific HDL Messages by Module/Entity

Message ID is in parentheses at the beginning of the message. Use the Message ID to
enable or disable a specific HDL info or warning message. Enabling or disabling a
specific message overrides its HDL Message Level. This method is different from the
message suppression in the Messages window because you can disable messages for a
specific module or a specific entity. This method applies only to the HDL messages,
and if you disable a message with this method, the Intel Quartus Prime software lists
the message as a suppressed message.

To disable specific HDL messages in the Intel Quartus Prime software, follow these
steps:

1. Click Assignments [0 Settings 0 Compiler Settings [Advanced Settings
(Synthesis).

2. In the Advanced Message Settings dialog box, add the Message IDs you want
to enable or disable.

To enable or disable specific HDL messages in your HDL, use the message_on and
message_oOFT synthesis directives. These directives require a space-separated list
of Message IDs. You can enable or disable messages with these synthesis
directives immediately before Verilog HDL modules, VHDL entities, or VHDL
architectures. You cannot enable or disable a message during an HDL construct.

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

184

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
683283 | 2018.09.24 ®

A message enabled or disabled via a message_on or message off synthesis
directive overrides its HDL Message Level or any message_level synthesis
directive. The message remains disabled until the end of the source file or until
you use another message_on or message_ofT directive to change the status of
the message.

Table 69. HDL message_ off Directive for Message with ID 10000

HDL Code

Verilog HDL // altera message_off 10000

or
/* altera message_off 10000 */

VHDL -- altera message_off 10000

3.8. Node-Naming Conventions in Intel Quartus Prime Integrated
Synthesis

Whenever possible, Intel Quartus Prime Integrated Synthesis uses wire or signal
names from your source code to name nodes such as LEs or ALMs. Some nodes, such
as registers, have predictable names that do not change when a design is
resynthesized, although certain optimizations can affect register names. The names of
other nodes, particularly LEs or ALMs that contain only combinational logic, can
change due to logic optimizations that the software performs.

3.8.1. Hierarchical Node-Naming Conventions

To make each name in your design unique, the Intel Quartus Prime software adds the
hierarchy path to the beginning of each name. The “|” separator indicates a level of
hierarchy. For each instance in the hierarchy, the software adds the entity name and
the instance name of that entity, with the “:” separator between each entity name and
its instance name. For example, if a design defines entity A with the name
my_A_inst, the hierarchy path of that entity would be Azmy_A_inst. You can obtain
the full name of any node by starting with the hierarchical instance path, followed by a
“1”, and ending with the node name inside that entity.

This example shows you the convention:

<entity 0>:<instance_name 0>]<entity 1>:<instance_name 1>]...|<instance_name n>|
<node_nane>

For example, if entity A contains a register (DFF atom) called my_dff, its full
hierarchy name would be Azmy_A_inst|my_dff.

To instruct the Compiler to generate node names that do not contain entity names, on
the Compilation Process Settings page of the Settings dialog box, click More
Settings, and then turn off Display entity name for node name.

With this option turned off, the node names use the convention in shown in this

example:
<instance_name 0>]<instance_name 1>|...]<instance_name n> |<node_nane>
D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

185

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
® 683283 | 2018.09.24

3.8.2. Node-Naming Conventions for Registers (DFF or D Flipflop Atoms)

In Verilog HDL and VHDL, inferred registers use the names of the reg or signal
connected to the output.

Table 70. HDL Example of a Register that Creates my_df f _out DFF Primitive

HDL Register Code

Verilog HDL wire dff_in, my_dff out, clk;

always @ (posedge clk)
my_dff_out <= dff_in;

VHDL signal dff_in, my_dff _out, clk;

process (clk)

begin

if (rising_edge(clk)) then
my_dff_out <= dff_in;

end if;

end process;

AHDL designs explicitly declare DFF registers rather than infer, so the software uses
the user-declared name for the register.

For schematic designs using a .bdf, your design names all elements when you
instantiate the elements in your design, so the software uses the name you defined for
the register or DFF.

In the special case that a wire or signal (such as my_dff_out in the preceding
examples) is also an output pin of your top-level design, the Intel Quartus Prime
software cannot use that name for the register (for example, cannot use
my_dff_out) because the software requires that all logic and I/0 cells have unique

names. Here, Intel Quartus Prime Integrated Synthesis appends ~reg0 to the register
name.

Table 71. Verilog HDL Register Feeding Output Pin

For example, the Verilog HDL code example in this table generates a register called q~regO.

HDL Code

Verilog HDL module my_dff (input clk, input d, output q);

always @ (posedge clk)
q <= d;
endmodule

This situation occurs only for registers driving top-level pins. If a register drives a port
of a lower level of the hierarchy, the software removes the port during hierarchy
flattening and the register retains its original name, in this case, Q.

3.8.3. Register Changes During Synthesis

On some occasions, you might not find registers that you expect to view in the
synthesis netlist. Logic optimization might remove registers and synthesis
optimizations might change the names of the registers. Common optimizations include
inference of a state machine, counter, adder-subtractor, or shift register from registers
and surrounding logic. Other common register changes occur when the software packs
these registers into dedicated hardware on the FPGA, such as a DSP block or a RAM
block.

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

186

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
683283 | 2018.09.24 ®

The following factors can affect register names:
e Synthesis and Fitting Optimizations on page 187
e State Machines on page 188

e Inferred Adder-Subtractors, Shift Registers, Memory, and DSP Functions on page
188

e Packed Input and Output Registers of RAM and DSP Blocks on page 188

3.8.3.1. Synthesis and Fitting Optimizations

Logic optimization during synthesis might remove registers if you do not connect the
registers to inputs or outputs in your design, or if you can simplify the logic due to
constant signal values. Synthesis optimizations might change register names, such as
when the software merges duplicate registers to reduce resource utilization.

NOT-gate push back optimizations can affect registers that use preset signals. This
type of optimization can impact your timing assignments when the software uses
registers as clock dividers. If this situation occurs in your design, change the clock
settings to work on the new register name.

Synthesis netlist optimizations often change node names because the software can
combine or duplicate registers to optimize your design.

The Intel Quartus Prime Compilation Report provides a list of registers that synthesis
optimizations remove, and a brief reason for the removal. To generate the Intel
Quartus Prime Compilation Report, follow these steps:

1. In the Analysis & Synthesis folder, open Optimization Resulits.

2. Open Register Statistics, and then click the Registers Removed During
Synthesis report.

3. Click Removed Registers Triggering Further Register Optimizations.

The second report contains a list of registers that causes synthesis optimizations to
remove other registers from your design. The report provides a brief reason for the
removal, and a list of registers that synthesis optimizations remove due to the
removal of the initial register.

Intel Quartus Prime Integrated Synthesis creates synonyms for registers duplicated
with the Maximum Fan-Out option (or maxfan attribute). Therefore, timing
assignments applied to nodes that are duplicated with this option are applied to the
new nodes as well.

The Intel Quartus Prime Fitter can also change node names after synthesis (for
example, when the Fitter uses register packing to pack a register into an I/O element,
or when physical synthesis modifies logic). The Fitter creates synonyms for duplicated
registers so timing analysis can use the existing nhode name when applying
assignments.

You can instruct the Intel Quartus Prime software to preserve certain nodes
throughout compilation so you can use them for verification or making assignments.

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

187

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
® 683283 | 2018.09.24

3.8.3.2. State Machines

If your HDL code infers a state machine, the software maps the registers that
represent the states into a new set of registers that implement the state machine.
Most commonly, the software converts the state machine into a one-hot form in which
one register represents each state. In this case, for Verilog HDL or VHDL designs, the
registers take the name of the state register and the states.

For example, consider a Verilog HDL state machine in which the states are parameter
state0 = 1, statel = 2, state2 = 3, and in which the software declares the
state machine register as reg [1:0] my_fsm. In this example, the three one-hot
state registers are my_ fsm._stateO, my fsm._statel, and my_fsm._state?2.

An AHDL design explicitly specifies state machines with a state machine name. Your
design names state machine registers with synthesized names based on the state
machine name, but not the state names. For example, if a my_fsm state machine has
four state bits, The software might synthesize these state bits with names such as
my_fsm~12, my Ffsm~13, my fsm~14, and my Ffsm~15.

3.8.3.3. Inferred Adder-Subtractors, Shift Registers, Memory, and DSP Functions

The Intel Quartus Prime software infers IP cores from Verilog HDL and VHDL code for
logic that forms adder-subtractors, shift registers, RAM, ROM, and arithmetic functions
that are placed in DSP blocks.

Because adder-subtractors are part of an IP core instead of generic logic, the
combinational logic exists in the design with different names. For shift registers,
memory, and DSP functions, the software implements the registers and logic inside
the dedicated RAM or DSP blocks in the device. Thus, the registers are not visible as
separate LEs or ALMs.

3.8.3.4. Packed Input and Output Registers of RAM and DSP Blocks

The software packs registers into the input registers and output registers of RAM and
DSP blocks, so that they are not visible as separate registers in LEs or ALMs.

3.8.4. Preserving Register Names

Altera recommends that you preserve certain register names for verification or
debugging, or to ensure that you applied timing assignments correctly. Intel Quartus
Prime Integrated Synthesis preserves certain nodes automatically if the software uses
the nodes in a timing constraint.

Related Information

e Preserve Registers on page 154
Use the preserve attribute to instruct the Compiler not to minimize or remove
a specified register during synthesis optimizations or register netlist
optimizations

e Noprune Synthesis Attribute/Preserve Fan-out Free Register Node on page 156
Use the noprune attribute to preserve a fan-out-free register through the
entire compilation flow

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

188

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
683283 | 2018.09.24 ®

e Disable Register Merging/Don’t Merge Register on page 155
Use the synthesis attribute syn_dont_merge to ensure that the Compiler does
not merge registers with other registers

3.8.5. Node-Naming Conventions for Combinational Logic Cells

Whenever possible for Verilog HDL, VHDL, and AHDL code, the Intel Quartus Prime
software uses wire names that are the targets of assignments, but can change the
node names due to synthesis optimizations.

For example, consider the Verilog HDL code in this example. Intel Quartus Prime
Integrated Synthesis uses the names c, d, e, and T for the generated combinational
logic cells.

wire c;

reg d, e, T;

assign ¢ = a | b;

always @ (a or b)

d=a& b;

always @ (a or b) begin : my_label
e =a”"b;

end

always @ (a or b)

f=~CG] b);

For schematic designs using a .bdf, your design names all elements when you
instantiate the elements in your design and the software uses the name you defined
when possible.

If logic cells are packed with registers in device architectures such as the Stratix and
Cyclone device families, those names might not appear in the netlist after fitting. In
other devices, such as newer families in the Stratix and Cyclone series device families,
the register and combinational nodes are kept separate throughout the compilation, so
these names are more often maintained through fitting.

When logic optimizations occur during synthesis, it is not always possible to retain the
initial names as described. Sometimes, synthesized names are used, which are the
wire names with a tilde (~) and a number appended. For example, if a complex
expression is assigned to wire w and that expression generates several logic cells,
those cells can have names such as w, w~1, and w~2. Sometimes the original wire
name w is removed, and an arbitrary name such as rtl~123 is created. Intel Quartus
Prime Integrated Synthesis attempts to retain user names whenever possible. Any
node name ending with ~<number> is a name created during synthesis, which can
change if the design is changed and re-synthesized. Knowing these naming
conventions helps you understand your post-synthesis results, helping you to debug
your design or create assignments.

During synthesis, the software maintains combinational clock logic by not changing
nodes that might be clocks. The software also maintains or protects multiplexers in
clock trees, so that the Timing Analyzer has information about which paths are unate,
to allow complete and correct analysis of combinational clocks. Multiplexers often
occur in clock trees when the software selects between different clocks. To help with
the analysis of clock trees, the software ensures that each multiplexer encountered in
a clock tree is broken into 2:1 multiplexers, and each of those 2:1 multiplexers is
mapped into one lookup table (independent of the device family). This optimization

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

189

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
® 683283 | 2018.09.24

might result in a slight increase in area, and for some designs a decrease in timing
performance. To disable the option, click Assignments [Settings 0 Compiler
Settings 0 Advanced Settings (Synthesis) O Clock MUX Protection.

Related Information

Clock MUX Protection logic option
For more information about Clock MUX Protection logic option and a list of
supported devices

3.8.6. Preserving Combinational Logic Names

You can preserve certain combinational logic node names for verification or
debugging, or to ensure that timing assignments are applied correctly.

Use the keep attribute to keep a wire name or combinational node name through logic
synthesis minimizations and netlist optimizations.

For any internal node in your design clock network, use keep to protect the name so
that you can apply correct clock settings. Also, set the attribute for combinational logic
involved in cut and -through assignments.

Note: Setting the keep attribute for combinational logic can increase the area utilization and
increase the delay of the final mapped logic because the attribute requires the
insertion of extra combinational logic. Use the attribute only when necessary.

Related Information

Keep Combinational Node/Implement as Output of Logic Cell on page 157

3.9. Scripting Support

You can run procedures and make settings in a Tcl script. You can also run some
procedures at a command prompt. For detailed information about scripting command
options, refer to the Intel Quartus Prime Command-Line and Tcl API Help browser.

To run the Help browser, type the command at the command prompt shown in this
example:

quartus_sh --ghelp
You can specify many of the options either on an instance, at the global level, or both.
To make a global assignment, use the Tcl command shown in this example:

set_global_assignment -name <QSF Vari abl e Name> <Val ue>

To make an instance assignment, use the Tcl command shown in this example:

set_instance_assignment -name <QSF Vari abl e Nane> <Val ue>\ -to <I nstance Nanme>

To set the Synthesis Effort option at the command line, use the ——effort option
with the quartus_map executable shown in this example:

quartus_map <Desi gn name> --effort= "auto | fast"

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

190

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_synth_clock_mux_protection.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
683283 | 2018.09.24 ®

Related Information

e Tcl Scripting
For more information about Tcl scripting

e Intel Quartus Prime Settings File Manual
For more information about all settings and constraints in the Intel Quartus
Prime software

e Command-Line Scripting
For more information about command-line scripting

3.9.1. Adding an HDL File to a Project and Setting the HDL Version

To add an HDL or schematic entry design file to your project, use the Tcl assignments
shown in this example:

set_global_assignment —name VERILOG_FILE <file name>.<v|sv>
set_global_assignment —name SYSTEMVERILOG_FILE <file nane>.sv
set_global_assignment —name VHDL_FILE <file name>.<vhd|vhdl >

set_global_assignment -name AHDL_FILE <file name>.tdf
set_global_assignment -name BDF_FILE <file name>.bdf

Note: You can use any file extension for design files, as long as you specify the correct
language when adding the design file. For example, you can use .h for Verilog HDL
header files.

To specify the Verilog HDL or VHDL version, use the option shown in this example, at
the end of the VERILOG_FILE or VHDL_FILE command:

- HDL_VERSION <language version>

The variable <language version> takes one of the following values:
e VERILOG_1995

e VERILOG_2001

e SYSTEMVERILOG_2005

e VHDL_1987

e VHDL_1993

e VHDL_2008

For example, to add a Verilog HDL file called my_file.v written in Verilog-1995, use
the command shown in this example:

set_global_assignment —name VERILOG_FILE my file.v —HDL_VERSION \ VERILOG_1995

In this example, the syn_encoding attribute associates a binary encoding with the
states in the enumerated type count_state. In this example, the states are encoded
with the following values: zero = "11", one = "01", two = "10", three = "00".

ARCHITECTURE rtl OF my_ fsm 1S
TYPE count_state is (zero, one, two, three);
ATTRIBUTE syn_encoding : STRING;
ATTRIBUTE syn_encoding OF count_state : TYPE IS "11 01 10 00";
SIGNAL present_state, next_state : count_state;
BEGIN

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

191

https://www.intel.com/content/www/us/en/docs/programmable/683325/current/tcl-scripting.html
https://www.intel.com/content/www/us/en/docs/programmable/683084.html
https://www.intel.com/content/www/us/en/docs/programmable/683325/current/command-line-scripting.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
® 683283 | 2018.09.24

You can also use the syn_encoding attribute in Verilog HDL to direct the synthesis
tool to use the encoding from your HDL code, instead of using the State Machine
Processing option.

The syn_encoding value "user" instructs the Intel Quartus Prime software to
encode each state with its corresponding value from the Verilog HDL source code. By
changing the values of your state constants, you can change the encoding of your
state machine.

In Verilog-2001 and SystemVerilog Code: Specifying User-Encoded States with the
syn_encoding Attribute on page 192, the states are encoded as follows:

init = 00"
last = "11"
next = "01°
later = "10"

Example 22. Verilog-2001 and SystemVerilog Code: Specifying User-Encoded States with
the syn_encoding Attribute

(* syn_encoding = "user" *) reg [1:0] state;
parameter init = 0, last = 3, next = 1, later = 2;
always @ (state) begin

case (state)

init:

out = 2%b01;

next:

out = 2"b10;

later:

out = 2°b11;

last:

out = 2"b00;

endcase

end

Without the syn_encoding attribute, the Intel Quartus Prime software encodes the
state machine based on the current value of the State Machine Processing logic
option.

If you also specify a safe state machine (as described in Safe State Machine on page
152), separate the encoding style value in the quotation marks from the safe value
with a comma, as follows: “safe, one-hot” or “safe, gray”

Related Information
e Safe State Machine on page 152

¢ Manually Specifying State Assignments Using the syn_encoding Attribute on page
149

3.9.2. Assigning a Pin

To assign a signal to a pin or device location, use the Tcl command shown in this
example:

set_location_assignment -to <si gnal name> <l ocati on>

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

192

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis
683283 | 2018.09.24 ®

Valid locations are pin location names. Some device families also support edge and I/0O
bank locations. Edge locations are EDGE_BOTTOM, EDGE_LEFT, EDGE_TOP, and
EDGE_RIGHT. I/O bank locations include IOBANK 1 to 10BANK _n, where n is the
number of I/0 banks in a device.

3.9.3. Creating Design Partitions for Incremental Compilation

To create a partition, use the command shown in this example:

set_instance_assignment -name PARTITION_HIERARCHY \
<file name> -to <destinati on> -section_id <partition nane>

The <file name> variable is the name used for internally generated netlist files during
incremental compilation. If you create the partition in the Intel Quartus Prime
software, netlist files are named automatically by the Intel Quartus Prime software
based on the instance name. If you use Tcl to create your partitions, you must assign
a custom file name that is unique across all partitions. For the top-level partition, the
specified file name is ignored, and you can use any dummy value. To ensure the
names are safe and platform independent, file names should be unique, regardless of
case. For example, if a partition uses the file name my_File, no other partition can
use the file name MY_FILE. To make file naming simple, Altera recommends that you
base each file name on the corresponding instance name for the partition.

The <destination> is the short hierarchy path of the entity. A short hierarchy path is
the full hierarchy path without the top-level name, for example: "'ram:ram_unit]
altsyncram:altsyncram_component" (with quotation marks). For the top-level
partition, you can use the pipe (]) symbol to represent the top-level entity.

The <partition name> is the partition name you designate, which should be unique
and less than 1024 characters long. The name may only consist of alphanumeric
characters, as well as pipe (|), colon (:), and underscore (_) characters. Altera
recommends enclosing the name in double quotation marks (" ").

Related Information

Node-Naming Conventions in Intel Quartus Prime Integrated Synthesis on page 185
For more information about hierarchical naming conventions

3.10. Document Revision History

Table 72. Document Revision History

Date Version Changes

2018.09.24 18.1.0 e Added Factors Affecting Compilation Results topic.

¢ Removed references to VHDL-2008 synthesis support. This support was listed in
error and VHDL-2008 is only supported in Intel Quartus Prime Pro Edition

2016.05.03 16.0.0 Corrected description of Fitter Intial Placement Seed option.
2015.11.02 15.1.0 Changed instances of Quartus II to Intel Quartus Prime.
2015.05.04 15.0.0 e Removed support for early timing estimate feature.

e Removed the note on the assignment of the RAM style attributes as it is no
longer relevant.

2014.12.15 14.1.0 Updated location of Fitter Settings, Analysis & Synthesis Settings, and Physical
Optimization Settings to Compiler Settings.
continued...
D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

193

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

intel.

3. Intel Quartus Prime Integrated Synthesis
683283 | 2018.09.24

Date Version Changes
2014.06.30 14.0.0 Template update.
November 2013 13.1.0 ¢ Added a note regarding ROM inference using the ram_init_file in "RAM
Initialization File—for Inferred Memory” on page 16-61.
May 2013 13.0.0 e Added “Verilog HDL Configuration” on page 16-6.
e Added “"RAM Style Attribute—For Shift Registers Inference” on page 16-57.
e Added “Upgrade IP Components Dialog Box” on page 16-75.
June 2012 12.0.0 e Updated “Design Flow” on page 16-2.
November 2011 11.1.0 e Updated “Language Support” on page 16-5, “Incremental Compilation” on
page 16-22, “Intel Quartus Prime Synthesis Options” on page 16-24.
May 2011 11.0.0 e Updated “Specifying Pin Locations with chip_pin” on page 14-65, and “Shift
Registers” on page 14-48.
e Added a link to Intel Quartus Prime Help in “SystemVerilog Support” on
page 14-5.
e Added Example 14-106 and Example 14-107 on page 14-67.
December 2010 10.1.0 e Updated “Verilog HDL Support” on page 13-4 to include Verilog-2001 support.
e Updated “VHDL-2008 Support” on page 13-9 to include the condition operator
(explicit and implicit) support.
e Rewrote “Limiting Resource Usage in Partitions” on page 13-32.
e Added “Creating LogicLock Regions” on page 13-32 and “Using Assignments to
Limit the Number of RAM and DSP Blocks” on page 13-33.
e Updated “Turning Off the Add Pass-Through Logic to Inferred RAMs no_rw_check
Attribute” on page 13-55.
e Updated “Auto Gated Clock Conversion” on page 13-28.
e Added links to Intel Quartus Prime Help.
July 2010 10.0.0 e Removed Referenced Documents section.
e Added “Synthesis Seed” on page 9-36 section.
e Updated the following sections:
“SystemVerilog Support” on page 9-5
“VHDL-2008 Support” on page 9-10
“Using Parameters/Generics” on page 9-16
“Parallel Synthesis” on page 9-21
“Limiting Resource Usage in Partitions” on page 9-32
“Synthesis Effort” on page 9-35
“Synthesis Attributes” on page 9-25
“Synthesis Directives” on page 9-27
“Auto Gated Clock Conversion” on page 9-29
“State Machine Processing” on page 9-36
“Multiply-Accumulators and Multiply-Adders” on page 9-50
“Resource Aware RAM, ROM, and Shift-Register Inference” on page 9-52
“RAM Style and ROM Style—for Inferred Memory” on page 9-53
“Turning Off the Add Pass-Through Logic to Inferred RAMs no_rw_check
Attribute” on page 9-55
“Using altera_attribute to Set Intel Quartus Prime Logic Options” on page 9-68
“Adding an HDL File to a Project and Setting the HDL Version” on page 9-83
“Creating Design Partitions for Incremental Compilation” on page 9-85
“Inferring Multiplier, DSP, and Memory Functions from HDL Code” on page 9-50
e Updated Table 9-9 on page 9-86.
continued...
Intel Quartus Prime Standard Edition User Guide: Design Compilation D Send Feedback

194

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Integrated Synthesis

683283 | 2018.09.24

intel.

Date

Version

Changes

December 2009 9.1.1

Added information clarifying inheritance of Synthesis settings by lower-level
entities, including Altera and third-party IP

Updated “Keep Combinational Node/Implement as Output of Logic Cell” on
page 9-46

November 2009 9.1.0

Updated the following sections:

“Initial Constructs and Memory System Tasks” on page 9-7

“VHDL Support” on page 9-9

“Parallel Synthesis” on page 9-21

“Synthesis Directives” on page 9-27

“Timing-Driven Synthesis” on page 9-31

“Safe State Machines” on page 9-40

“RAM Style and ROM Style—for Inferred Memory” on page 9-53
“Translate Off and On / Synthesis Off and On” on page 9-62

“Read Comments as HDL"” on page 9-63

“Adding an HDL File to a Project and Setting the HDL Version” on page 9-81
Removed “Remove Redundant Logic Cells” section

Added “Resource Aware RAM, ROM, and Shift-Register Inference” section
Updated Table 9-9 on page 9-83

March 2009

9.0.0

Updated Table 9-9.

Updated the following sections:

“Partitions for Preserving Hierarchical Boundaries” on page 9-20

“Analysis & Synthesis Settings Page of the Settings Dialog Box” on page 9-24
“Timing-Driven Synthesis” on page 9-30

“Turning Off Add Pass-Through Logic to Inferred RAMs/ no_rw_check Attribute
Setting” on page 9-54

Added “Parallel Synthesis” on page 9-21

Chapter 9 was previously Chapter 8 in software version 8.1

Related Information

Documentation Archive

For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

D Send Feedback

Intel Quartus Prime Standard Edition User Guide: Design Compilation

195

https://www.altera.com/search-archives
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

683283 | 2018.09.24 I t I
D Send Feedback I l e R

4. Reducing Compilation Time

You can employ various techniques to reduce to time required for synthesis and fitting
in the Intel Quartus Prime Compiler.

4.1. Compilation Time Advisor

A Compilation Time Advisor is available in the Intel Quartus Prime GUI by clicking
Tools 0 Advisors [0 Compilation Time Advisor. This chapter describes all the
compilation time optimizing techniques available in the Compilation Time Advisor.

4.2. Strategies to Reduce the Overall Compilation Time
You can use the following strategies to reduce the overall time required to compile
your design:
e Parallel compilation (for systems with multiple processor cores)

¢ Incremental compilation reduces compilation time by only recompiling design
partitions that have not met design requirements.

e Rapid Recompile and Smart Compilation reuse results from a previous compilation
to reduce overall compilation time

4.2.1. Running Rapid Recompile

During Rapid Recompile the Compiler reuses previous synthesis and fitting results
whenever possible, and does not reprocess unchanged design blocks. Use Rapid
Recompile to reduce timing variations and the total recompilation time after making
small design changes.

Figure 36. Rapid Recompile
=

A Changed
J

Unchanged

Regular Compile

Rapid
Recompile

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.

*QOther names and brands may be claimed as the property of others.

Iso
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

4. Reducing Compilation Time
683283 | 2018.09.24 ®

To run Rapid Recompile, follow these steps:

1. To start Rapid Recompile following an initial compilation (or after running the
Route stage of the Fitter), click Processing 0 Start 00 Start Rapid Recompile.
Rapid Recompile implements the following types of design changes without full
recompilation:

e Changes to nodes tapped by the Signal Tap Logic Analyzer
e Changes to combinational logic functions

e Changes to state machine logic (for example, new states, state transition
changes)

e Changes to signal or bus latency or addition of pipeline registers
e Changes to coefficients of an adder or multiplier

e Changes register packing behavior of DSP, RAM, or I/O

e Removal of unnecessary logic

e Changes to synthesis directives

The Incremental Compilation Preservation Summary report provides details about
placement and routing implementation.

2. Click the Rapid Recompile Preservation Summary report to view detailed
information about the percentage of preserved compilation results.

Figure 37. Rapid Recompile Preservation Summary

Rapid Recompile Preservation Summary

Type Achieved

1 Placement (by node) 33.25 % (2160/ 6497)
2 Routing (by connection) 49.93 % (14165/ 28372)

4.2.2. Enabling Multi-Processor Compilation

The Compiler can detect and use multiple processors to reduce total compilation time.
You specify the number of processors the Compiler uses. The Intel Quartus Prime
software can use up to 16 processors to run algorithms in parallel. The Compiler uses
parallel compilation by default. To reserve some processors for other tasks, specify a
maximum number of processors that the software uses.

This technique reduces the compilation time by up to 10% on systems with two
processing cores, and by up to 20% on systems with four cores. When running timing
analysis independently, two processors reduce the timing analysis time by an average
of 10%. This reduction reaches an average of 15% when using four processors.

The Intel Quartus Prime software does not necessarily use all the processors that you
specify during a given compilation. Additionally, the software never uses more than
the specified number of processors. This fact enables you to work on other tasks
without slowing down your computer. The use of multiple processors does not affect
the quality of the fit. For a given Fitter seed, and given Maximum processors
allowed setting on a specific design, the fit is exactly the same and deterministic.
This remains true, regardless of the target machine, and the number of available
processors. Different Maximum processors allowed specifications produce different
results of the same quality. The impact is similar to changing the Fitter seed setting.

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

197

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

intel.

4. Reducing Compilation Time
683283 | 2018.09.24

To enable multiprocessor compilation, follow these steps:

1.
2.
3.

Open or create an Intel Quartus Prime project.
Click Assignments [Settings 0 Compilation Process Settings.

Under Parallel compilation, specify options for the number of processors the
Compiler uses.

View detailed information about processor use in the Parallel Compilation report
following compilation.

To specify the number of processors for compilation at the command line, use the
following Tcl command in your script:

set_global_assignment -name NUM_PARALLEL_PROCESSORS <val ue>

In this case, <value> is an integer from 1 to 16.

If you want the Intel Quartus Prime software to detect the number of processors
and use all the processors for the compilation, include the following Tcl command
in your script:

set_global_assignment -name NUM_PARALLEL_PROCESSORS ALL

The actual reduction in compilation time when using incremental compilation
partitions depends on your design and on the specific compilation settings. For
example, compilations with multi-corner optimization enabled benefit more from
using multiple processors than compilations without multi-corner optimization. The
Fitter (quartus_fit) and the Intel Quartus Prime Timing Analyzer
(quartus_sta) stages in the compilation can, in certain cases, benefit from the
use of multiple processors. The Flow Elapsed Time report shows the average
number of processors for these stages. The Parallel Compilation report shows a
more detailed breakdown of processor usage. This report displays only if you
enable parallel compilation.

For designs with partitions, once you partition your design and enable partial
compilation, the Intel Quartus Prime software can use different processors to
compile those partitions simultaneously during Analysis & Synthesis. This can
cause higher peak memory usage during Analysis & Synthesis.

Note: The Compiler detects Intel Hyper-Threading® Technology (Intel® HT
Technology) as a single processor. If your system includes a single processor
with Intel HT Technology, set the number of processors to one. Do not use
the Intel HT Technology for Intel Quartus Prime compilations.

4.2.3. Using Incremental Compilation

The incremental compilation feature can accelerate design iteration time by up to 70%
for small design changes, and helps you reach design timing closure more efficiently.

You can speed up design iterations by recompiling only a particular design partition
and merging results with previous compilation results from other partitions. You can
also use physical synthesis optimization techniques for specific design partitions while
leaving other parts of your design untouched to preserve performance.

If you are using a third-party synthesis tool, you can create separate atom netlist files
for the parts of your design that you already have synthesized and optimized so that
you update only the parts of your design that change.

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

198

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. Reducing Compilation Time
683283 | 2018.09.24 ®

In the standard incremental compilation design flow, you can divide the top-level
design into partitions, which the software can compile and optimize in the top-level
Intel Quartus Prime project. You can preserve fitting results and performance for
completed partitions while other parts of your design are changing. Incremental
compilation reduces the compilation time for each design iteration because the
software does not recompile the unchanged partitions in your design.

The incremental compilation feature facilitates team-based design flows by enabling
designers to create and optimize design blocks independently, when necessary, and
supports third-party IP integration.

4.2.4. Using Block-Based Compilation

During the design process, you can isolate functional blocks that meet placement and
timing requirements from others still undergoing change and optimization. By isolating
functional blocks into partitions, you can apply optimization techniques to selected
areas only compile those areas.

To create partitions dividing functional blocks:

1. In the Design Partition Planner, identify blocks of a size suitable for partitioning.
In general, a partition represents roughly 15 to 20 percent of the total design size.
Use the information area below the bar at the top of each entity.

Figure 38. Entity representation in the Design Partition Planner

Percent of total design size 1T S e

No Children

‘Ei speed_ch

Extract and collapse entities as necessary to achieve stand-alone blocks

3. For each entity of the desired size containing related blocks of logic, right-click the
entity and click Create Design Partition to place that entity in its own partition.

The goal is to achieve partitions containing related blocks of logic.

4.3. Reducing Synthesis Time and Synthesis Netlist Optimization
Time

You can reduce synthesis time without affecting the Fitter time by reducing your use
of netlist optimizations. For tips on reducing synthesis time when using third-party
EDA synthesis tools, refer to your synthesis software’s documentation.

4.3.1. Settings to Reduce Synthesis Time and Synthesis Netlist
Optimization Time

Synthesis netlist and physical synthesis optimization settings can significantly increase
the overall compilation time for large designs. Refer to Analysis and Synthesis
messages to determine the length of optimization time.

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

199

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. Reducing Compilation Time
® 683283 | 2018.09.24

If your design already meets performance requirements without synthesis netlist or
physical synthesis optimizations, turn off these options to reduce compilation time. If
you require synthesis netlist optimizations to meet performance, optimize partitions of
your design hierarchy separately to reduce the overall time spent in Analysis and
Synthesis.

4.3.2. Use Appropriate Coding Style to Reduce Synthesis Time

Your HDL coding style can also affect the synthesis time. For example, if you want to
infer RAM blocks from your code, you must follow the guidelines for inferring RAMs. If
RAM blocks are not inferred properly, the software implements those blocks as
registers.

If you are trying to infer a large memory block, the software consumes more
resources in the FPGA. This can cause routing congestion and increasing compilation
time significantly. If you see high routing utilizations in certain blocks, it is a good idea
to review the code for such blocks.

4.4. Reducing Placement Time

The time required to place a design depends on two factors: the number of ways the
logic in your design can be placed in the device, and the settings that control the
amount of effort required to find a good placement.

You can reduce the placement time by changing the settings for the placement
algorithm, or by using incremental compilation to preserve the placement for the
unchanged parts of your design.

Sometimes there is a trade-off between placement time and routing time. Routing
time can increase if the placer does not run long enough to find a good placement.
When you reduce placement time, ensure that it does not increase routing time and
negate the overall time reduction.

4.4.1. Fitter Effort Setting

For designs with very tight timing requirements, both Auto Fit and Standard Fit use
the maximum effort during optimization.Intel recommends using Auto Fit for
reducing compilation time.

The highest Fitter effort setting, Standard Fit, requires the most runtime, but does
not always yield a better result than using the default Auto Fit. If you are certain that
your design has only easy-to-meet timing constraints, you can select Fast Fit for an
even greater runtime savings.

4.4.2. Placement Effort Multiplier Settings

You can control the amount of time the Fitter spends in placement by reducing with
the Placement Effort Multiplier option.

Click Assignments [0 Settings 0 Compiler Settings 0 Advanced Settings
(Fitter) and specify a value for Placement Effort Multiplier. The default is 1.0. Legal
values must be greater than 0 and can be non-integer values. Numbers between 0
and 1 can reduce fitting time, but also can reduce placement quality and design
performance.

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

200

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. Reducing Compilation Time
683283 | 2018.09.24 ®

4.4.3. Physical Synthesis Effort Settings

Physical synthesis options enable you to optimize the post-synthesis netlist and
improve timing performance. These options, which affect placement, can significantly
increase compilation time.

If your design meets your performance requirements without physical synthesis
options, turn them off to reduce compilation time. For example, if some or all the
physical synthesis algorithm information messages display an improvement of 0 ps,
turning off physical synthesis can reduce compilation time.

You also can use the Physical synthesis effort setting on the Advanced Fitter
Settings dialog box to reduce the amount of extra compilation time used by these
optimizations.

The Fast setting directs the Intel Quartus Prime software to use a lower level of
physical synthesis optimization. Compared to the Normal physical synthesis effort
level, using the Fast setting can cause a smaller increase in compilation time.
However, the lower level of optimization can result in a smaller increase in design
performance.

4.4.4. Preserving Placement with Incremental Compilation

Preserving information about previous placements can make future placements faster.
The incremental compilation feature provides an easy-to-use method for preserving
placement results.

4.5. Reducing Routing Time

The routing time is usually not a significant amount of the compilation time. The time
required to route a design depends on three factors: the device architecture, the
placement of your design in the device, and the connectivity between different parts of
your design.

If your design requires a long time to route, perform one or more of the following
actions:

e Check for routing congestion.
e Turn off Fitter Aggressive Routability Optimization.

e Use incremental compilation to preserve routing information for parts of your
design.

4.5.1. Identifying Routing Congestion with the Chip Planner

To identify areas of routing congestion in your design:

D Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Compilation

201

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. Reducing Compilation Time
® 683283 | 2018.09.24

Click Tools O Chip Planner.

2. To view the routing congestion in the Chip Planner, double-click the Report
Routing Utilization command in the Tasks list.

3. Click Preview in the Report Routing Utilization dialog box to preview the
default congestion display.

4. Change the Routing utilization type to display congestion for specific resources.
The default display uses dark blue for 0% congestion and red for 100%.

5. Adjust the slider for Threshold percentage to change the congestion threshold
level.

The Intel Quartus Prime compilation messages contain information about average and
peak interconnect usage. Peak interconnect usage over 75%, or average interconnect
usage over 60% indicate possible difficulties fitting your design. Similarly, peak
interconnect usage over 90%, or average interconnect usage over 75%, indicate a
high chance of not getting a valid fit.

Related Information

Using Incremental Compilation on page 198

4.5.1.1. Areas with Routing Congestion

Even if average congestion is not high, the design may have areas where congestion is
high in a specific type of routing. You can use the Chip Planner to identify areas of
high congestion for specific interconnect types.

e You can change the connections in your design to reduce routing congestion

e If the area with routing congestion is in a Logic Lock (Standard) region or between
Logic Lock (Standard) regions, change or remove the Logic Lock (Standard)
regions and recompile your design.

— If the routing time remains the same, the time is a characteristic of your
design and the placement

— If the routing time decreases, consider changing the size, location, or contents
of Logic Lock (Standard) regions to reduce congestion and decrease routing
time.

4.5.1.2. Congestion due to HDL Coding style

Sometimes, routing congestion may be a result of the HDL coding style used in your
design. After identifying congested areas using the Chip Planner, review the HDL code
for the blocks placed in those areas to determine whether you can reduce interconnect
usage by code changes.

4.5.1.3. Preserving Routing with Incremental Compilation

Preserving the previous routing results for part of your design can reduce future
routing time. Incremental compilation provides an easy-to-use methodology that
preserves placement and routing results.

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

202

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. Reducing Compilation Time
683283 | 2018.09.24

intel.

4.6. Reducing Static Timing Analysis Time

If you are performing timing-driven synthesis, the Intel Quartus Prime software runs
the Timing Analyzer during Analysis and Synthesis.

The Intel Quartus Prime Fitter also runs the Timing Analyzer during placement and
routing. If there are incorrect constraints in the Synopsys Design Constraints File
(.sdc), the Intel Quartus Prime software may spend unnecessary time processing
constraints several times.

o If you do not specify false paths and multicycle paths in your design, the Timing
Analyzer may analyze paths that are not relevant to your design.

e If you redefine constraints in the .sdc files, the Timing Analyzer may spend
additional time processing them. To avoid this situation, look for indications that
Synopsis design constraints are being redefined in the compilation messages, and
update the .sdc file.

e Ensure that you provide the correct timing constraints to your design, because the
software cannot assume design intent, such as which paths to consider as false
paths or multicycle paths. When you specify these assignments correctly, the
Timing Analyzer skips analysis for those paths, and the Fitter does not spend
additional time optimizing those paths.

4.7. Setting Process Priority

It might be necessary to reduce the computing resources allocated to the compilation
at the expense of increased compilation time. It can be convenient to reduce the
resource allocation to the compilation with single processor machines if you must run
other tasks at the same time.

Related Information

Processing Page (Options Dialog Box)
In Intel Quartus Prime Help.

4.8. Reducing Compilation Time Revision History

Date Version Changes
2016.05.02 16.0.0 e Corrected typo in Using Parallel Compilation with Multiple Processors.
e Stated limitations about deprecated physical synthesis options.
2015.11.02 15.1.0 Changed instances of Quartus II to Intel Quartus Prime.
2014.12.15 14.1.0 e Updated location of Fitter Settings, Analysis & Synthesis Settings, and Physical
Synthesis Optimizations to Compiler Settings.
e Added information about Rapid Recompile feature.
2014.08.18 14.0a10.0 Added restriction about smart compilation in Arria 10 devices.
June 2014 14.0.0 Updated format.
May 2013 13.0.0 Removed the “Limit to One Fitting Attempt”, “Using Early Timing Estimation”, “Final
Placement Optimizations”, and “Using Rapid Recompile” sections.
Updated “Placement Effort Multiplier Settings” section.
Updated “Identifying Routing Congestion in the Chip Planner” section.
General editorial changes throughout the chapter.
continued...

D Send Feedback

Intel Quartus Prime Standard Edition User Guide: Design Compilation

203

http://quartushelp.altera.com/current/index.htm#global/global/gl_tab_processing.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

|
4. Reducing Compilation Time
® 683283 | 2018.09.24

Date Version Changes
June 2012 12.0.0 Removed survey link.
November 2011 11.0.1 Template update.
May 2011 11.0.0 e Updated “Using Parallel Compilation with Multiple Processors”.

e Updated “Identifying Routing Congestion in the Chip Planner”.
e General editorial changes throughout the chapter.

December 2010 | 10.1.0 e Template update.

e Added details about peak and average interconnect usage.
e Added new section “Reducing Static Timing Analysis Time”.
e Minor changes throughout chapter.

July 2010 10.0.0 Initial release.

Related Information

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

Intel Quartus Prime Standard Edition User Guide: Design Compilation D Send Feedback

204

https://www.altera.com/search-archives
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

683283 | 2018.09.24 I t I
D Send Feedback I l e R

A. Intel Quartus Prime Standard Edition User Guides

Refer to the following user guides for comprehensive information on all phases of the
Intel Quartus Prime Standard Edition FPGA design flow.

Related Information

Intel Quartus Prime Standard Edition User Guide: Getting Started
Introduces the basic features, files, and design flow of the Intel Quartus Prime
Standard Edition software, including managing Intel Quartus Prime Standard
Edition projects and IP, initial design planning considerations, and project
migration from previous software versions.

Intel Quartus Prime Standard Edition User Guide: Platform Designer
Describes creating and optimizing systems using Platform Designer (Standard),
a system integration tool that simplifies integrating customized IP cores in your
project. Platform Designer (Standard) automatically generates interconnect
logic to connect intellectual property (IP) functions and subsystems.

Intel Quartus Prime Standard Edition User Guide: Desigh Recommendations
Describes best design practices for designing FPGAs with the Intel Quartus
Prime Standard Edition software. HDL coding styles and synchronous design
practices can significantly impact design performance. Following recommended
HDL coding styles ensures that Intel Quartus Prime Standard Edition synthesis
optimally implements your design in hardware.

Intel Quartus Prime Standard Edition User Guide: Design Compilation
Describes set up, running, and optimization for all stages of the Intel Quartus
Prime Standard Edition Compiler. The Compiler synthesizes, places, and routes
your design before generating a device programming file.

Intel Quartus Prime Standard Edition User Guide: Design Optimization
Describes Intel Quartus Prime Standard Edition settings, tools, and techniques
that you can use to achieve the highest design performance in Intel FPGAs.
Techniques include optimizing the design netlist, addressing critical chains that
limit retiming and timing closure, and optimization of device resource usage.

Intel Quartus Prime Standard Edition User Guide: Programmer
Describes operation of the Intel Quartus Prime Standard Edition Programmer,
which allows you to configure Intel FPGA devices, and program CPLD and
configuration devices, via connection with an Intel FPGA download cable.

Intel Quartus Prime Standard Edition User Guide: Partial Reconfiguration
Describes Partial Reconfiguration, an advanced design flow that allows you to
reconfigure a portion of the FPGA dynamically, while the remaining FPGA
design continues to function. Define multiple personas for a particular design
region, without impacting operation in other areas.

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel

Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in

Iso
9001:2015
Registered

writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*QOther names and brands may be claimed as the property of others.

https://www.altera.com/documentation/yoq1529444104707.html
https://www.altera.com/documentation/jrw1529444674987.html
https://www.altera.com/documentation/ntt1529445293791.html
https://www.altera.com/documentation/pts1529446039343.html
https://www.altera.com/documentation/zov1529446404644.html
https://www.altera.com/documentation/qnz1529450399707.html
https://www.altera.com/documentation/wck1529450731513.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

A. Intel Quartus Prime Standard Edition User Guides
® 683283 | 2018.09.24

e Intel Quartus Prime Standard Edition User Guide: Third-party Simulation
Describes RTL- and gate-level design simulation support for third-party
simulation tools by Aldec*, Cadence*, Mentor Graphics, and Synopsys that
allow you to verify design behavior before device programming. Includes
simulator support, simulation flows, and simulating Intel FPGA IP.

e Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis
Describes support for optional synthesis of your design in third-party synthesis
tools by Mentor Graphics, and Synopsys. Includes design flow steps, generated
file descriptions, and synthesis guidelines.

e Intel Quartus Prime Standard Edition User Guide: Debug Tools
Describes a portfolio of Intel Quartus Prime Standard Edition in-system design
debugging tools for real-time verification of your design. These tools provide
visibility by routing (or “tapping”) signals in your design to debugging logic.
These tools include System Console, Signal Tap logic analyzer, Transceiver
Toolkit, In-System Memory Content Editor, and In-System Sources and Probes
Editor.

¢ Intel Quartus Prime Standard Edition User Guide: Timing Analyzer
Explains basic static timing analysis principals and use of the Intel Quartus
Prime Standard Edition Timing Analyzer, a powerful ASIC-style timing analysis
tool that validates the timing performance of all logic in your design using an
industry-standard constraint, analysis, and reporting methodology.

e Intel Quartus Prime Standard Edition User Guide: Power Analysis and Optimization
Describes the Intel Quartus Prime Standard Edition Power Analysis tools that
allow accurate estimation of device power consumption. Estimate the power
consumption of a device to develop power budgets and design power supplies,
voltage regulators, heat sink, and cooling systems.

e Intel Quartus Prime Standard Edition User Guide: Design Constraints
Describes timing and logic constraints that influence how the Compiler
implements your design, such as pin assignments, device options, logic
options, and timing constraints. Use the Pin Planner to visualize, modify, and
validate all I/O assignments in a graphical representation of the target device.

e Intel Quartus Prime Standard Edition User Guide: PCB Design Tools
Describes support for optional third-party PCB design tools by Mentor Graphics
and Cadence*. Also includes information about signal integrity analysis and
simulations with HSPICE and IBIS Models.

e Intel Quartus Prime Standard Edition User Guide: Scripting
Describes use of Tcl and command line scripts to control the Intel Quartus
Prime Standard Edition software and to perform a wide range of functions,
such as managing projects, specifying constraints, running compilation or
timing analysis, or generating reports.

Intel Quartus Prime Standard Edition User Guide: Design Compilation D send Feedback

206

https://www.altera.com/documentation/gtt1529956823942.html
https://www.altera.com/documentation/gjg1529964577982.html
https://www.altera.com/documentation/kxi1529965561204.html
https://www.altera.com/documentation/ony1529966370740.html
https://www.altera.com/documentation/xhv1529966780595.html
https://www.altera.com/documentation/grc1529967026944.html
https://www.altera.com/documentation/wfp1529967260660.html
https://www.altera.com/documentation/jeb1529967983176.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

	Intel Quartus Prime Standard Edition User Guide: Design Compilation
	Contents
	1. Intel® Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design
	1.1. About Intel® Quartus® Prime Incremental Compilation
	1.2. Deciding Whether to Use an Incremental Compilation Flow
	1.2.1. Flat Compilation Flow with No Design Partitions
	1.2.1.1. Incremental Capabilities Available When A Design Has No Partitions
	1.2.1.1.1. With Smart Compilation
	1.2.1.1.2. With Rapid Recompile
	1.2.1.1.3. With Signal Tap Logic Analyzer

	1.2.2. Incremental Compilation Flow With Design Partitions
	1.2.2.1. Impact of Using Incremental Compilation with Design Partitions
	1.2.2.2. Intel Quartus Prime Design Stages for Incremental Compilation
	1.2.2.2.1. Analysis and Synthesis Stage
	1.2.2.2.2. Partition Merge Stage
	1.2.2.2.3. Fitter Stage
	1.2.2.2.4. How to Compare Incremental Compilation Results with Flat Design Results

	1.2.3. Team-Based Design Flows and IP Delivery
	1.2.3.1. With a Single Intel Quartus Prime Project
	1.2.3.2. With Multiple Intel Quartus Prime Projects
	1.2.3.2.1. Additional Planning Needed

	1.2.3.3. Collaboration on a Team-Based Design

	1.3. Incremental Compilation Summary
	1.3.1. Incremental Compilation Single Intel Quartus Prime Project Flow
	1.3.2. Steps for Incremental Compilation
	1.3.2.1. Preparing a Design for Incremental Compilation
	1.3.2.2. Compiling a Design Using Incremental Compilation

	1.3.3. Creating Design Partitions
	1.3.3.1. Creating Design Partitions in the Project Navigator
	1.3.3.2. Creating Design Partitions in the Design Partitions Window
	1.3.3.3. Creating Design Partitions With the Design Partition Planner
	1.3.3.4. Creating Design Partitions With Tcl Scripting
	1.3.3.5. Automatically-Generated Partitions

	1.4. Common Design Scenarios Using Incremental Compilation
	1.4.1. Reducing Compilation Time When Changing Source Files for One Partition
	1.4.2. Optimizing a Timing-Critical Partition
	1.4.3. Adding Design Logic Incrementally or Working With an Incomplete Design
	1.4.4. Debugging Incrementally With the Signal Tap Logic Analyzer
	1.4.5. Functional Safety IP Implementation
	1.4.5.1. Software Tool Impact on Safety
	1.4.5.2. Functional Safety Separation Flow
	1.4.5.2.1. Design Creation Flow
	1.4.5.2.2. Design Modification Flow

	1.4.5.3. How to Turn On the Functional Safety Separation Flow
	1.4.5.4. Preservation of Device Resources
	1.4.5.5. Preservation of Placement in the Device with LogicLock
	1.4.5.6. Assigning I/O Pins
	1.4.5.7. General Guidelines for Implementation
	1.4.5.8. Reports for Safety IP
	1.4.5.8.1. Fitter Report

	1.4.5.9. SIP Partial Bitstream Generation
	1.4.5.10. Exporting and Importing Your Safety IP
	1.4.5.11. POF Comparison Tool for Verification

	1.5. Deciding Which Design Blocks Should Be Design Partitions
	1.5.1. Impact of Design Partitions on Design Optimization
	1.5.1.1. Turning On Supported Cross-boundary Optimizations

	1.5.2. Design Partition Assignments Compared to Physical Placement Assignments
	1.5.3. Using Partitions With Third-Party Synthesis Tools
	1.5.3.1. Synopsys Synplify Pro/Premier and Mentor Graphics Precision RTL Plus
	1.5.3.2. Other Synthesis Tools

	1.5.4. Assessing Partition Quality
	1.5.4.1. Partition Statistics Reports
	1.5.4.2. Partition Timing Reports
	1.5.4.3. Incremental Compilation Advisor

	1.6. Specifying the Level of Results Preservation for Subsequent Compilations
	1.6.1. Netlist Type for Design Partitions
	1.6.2. Fitter Preservation Level for Design Partitions
	1.6.3. Where Are the Netlist Databases Saved?
	1.6.4. Deleting Netlists
	1.6.5. What Changes Initiate the Automatic Resynthesis of a Partition?
	1.6.5.1. Resynthesis Due to Source Code Changes
	1.6.5.2. Forcing Use of the Compilation Netlist When a Partition has Changed

	1.7. Exporting Design Partitions from Separate Intel Quartus Prime Projects
	1.7.1. Preparing the Top-Level Design
	1.7.1.1. Empty Partitions

	1.7.2. Project Management— Making the Top-Level Design Available to Other Designers
	1.7.2.1. Distributing the Top-Level Intel Quartus Prime Project
	1.7.2.2. Generating Design Partition Scripts

	1.7.3. Exporting Partitions
	1.7.4. Viewing the Contents of a Intel Quartus Prime Exported Partition File (.qxp)
	1.7.5. Integrating Partitions into the Top-Level Design
	1.7.5.1. Integrating Assignments from the .qxp
	1.7.5.1.1. Design Partition Assignments Within the Exported Partition
	1.7.5.1.2. Synopsys Design Constraint Files for the Intel Quartus Prime Timing Analyzer
	1.7.5.1.3. Global Assignments
	1.7.5.1.4. LogicLock Region Assignments

	1.7.5.2. Integrating Encrypted IP Cores from .qxp Files
	1.7.5.3. Advanced Importing Options
	1.7.5.3.1. Importing LogicLock Assignments
	1.7.5.3.2. Advanced Import Settings

	1.8. Team-Based Design Optimization and Third-Party IP Delivery Scenarios
	1.8.1. Using an Exported Partition to Send to a Design Without Including Source Files
	1.8.2. Creating Precompiled Design Blocks (or Hard-Wired Macros) for Reuse
	Incorporate IP Core

	1.8.3. Designing in a Team-Based Environment
	Exporting Your Partition
	Integrating Your Partitions

	1.8.4. Enabling Designers on a Team to Optimize Independently
	1.8.4.1. Preparing Your Top-level Design
	1.8.4.2. Exporting Your Design
	Exporting Without Makefiles

	1.8.4.3. Importing Your Design
	Importing Without Makefiles

	1.8.4.4. Resolving Assignment Conflicts During Integration
	1.8.4.5. Importing a Partition to be Instantiated Multiple Times

	1.8.5. Performing Design Iterations With Lower-Level Partitions
	1.8.5.1. Providing the Complete Top-Level Project Framework
	1.8.5.2. Providing Information About the Top-Level Framework

	1.9. Creating a Design Floorplan With LogicLock Regions
	1.9.1. Creating and Manipulating LogicLock Regions
	1.9.2. Changing Partition Placement with LogicLock Changes

	1.10. Incremental Compilation Restrictions
	1.10.1. When Timing Performance May Not Be Preserved Exactly
	1.10.2. When Placement and Routing May Not Be Preserved Exactly
	1.10.3. Using Incremental Compilation With Intel Quartus Prime Archive Files
	1.10.4. Formal Verification Support
	1.10.5. Signal Probe Pins and Engineering Change Orders
	1.10.6. Signal Tap Logic Analyzer in Exported Partitions
	1.10.7. External Logic Analyzer Interface in Exported Partitions
	1.10.8. Assignments Made in HDL Source Code in Exported Partitions
	1.10.9. Design Partition Script Limitations
	1.10.9.1. Warnings About Extra Clocks Due to Design Partition Scripts
	1.10.9.2. Synopsys Design Constraint Files for the Timing Analyzer in Design Partition Scripts
	1.10.9.3. Wildcard Support in Design Partition Scripts
	1.10.9.4. Derived Clocks and PLLs in Design Partition Scripts
	1.10.9.5. Pin Assignments for GXB and LVDS Blocks in Design Partition Scripts
	1.10.9.6. Virtual Pin Timing Assignments in Design Partition Scripts
	1.10.9.7. Top-Level Ports that Feed Multiple Lower-Level Pins in Design Partition Scripts

	1.10.10. Restrictions on IP Core Partitions
	1.10.11. Restrictions on Intel Arria® 10 Transceiver
	1.10.12. Register Packing and Partition Boundaries
	1.10.13. I/O Register Packing

	1.11. Scripting Support
	1.11.1. Tcl Scripting and Command-Line Examples
	1.11.1.1. Creating Design Partitions
	1.11.1.2. Enabling or Disabling Design Partition Assignments During Compilation
	1.11.1.3. Setting the Netlist Type
	1.11.1.4. Setting the Fitter Preservation Level for a Post-fit or Imported Netlist
	1.11.1.5. Preserving High-Speed Optimization
	1.11.1.6. Specifying the Software Should Use the Specified Netlist and Ignore Source File Changes
	1.11.1.7. Reducing Opening a Project, Creating Design Partitions, andPerforming an Initial Compilation
	1.11.1.8. Optimizing the Placement for a Timing-Critical Partition
	1.11.1.9. Generating Design Partition Scripts
	1.11.1.10. Exporting a Partition
	1.11.1.11. Importing a Partition into the Top-Level Design
	1.11.1.12. Makefiles

	1.12. Document Revision History

	2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments
	2.1. About Incremental Compilation and Floorplan Assignments
	2.2. Incremental Compilation Overview
	2.2.1. Recommendations for the Netlist Type

	2.3. Design Flows Using Incremental Compilation
	2.3.1. Using Standard Flow
	2.3.2. Using Team-Based Flow
	2.3.2.1. Using Third-Party IP Delivery Flow

	2.3.3. Combining Design Flows
	2.3.4. Project Management in Team-Based Design Flows
	2.3.4.1. Using a Source Control System
	2.3.4.2. Using a Copy of the Top-Level Project
	2.3.4.3. Using a Separate Project
	2.3.4.4. Using Scripts
	2.3.4.5. Using Constraints

	2.4. Why Plan Partitions and Floorplan Assignments?
	2.4.1. Partition Boundaries and Optimization
	2.4.1.1. Merging Partitions
	2.4.1.2. Resource Utilization
	2.4.1.3. Turning On Supported Cross-Boundary Optimizations

	2.5. Guidelines for Incremental Compilation
	2.5.1. General Partitioning Guidelines
	2.5.1.1. Plan Design Hierarchy and Design Files
	2.5.1.2. Using Partitions with Third-Party Synthesis Tools
	2.5.1.3. Partition Design by Functionality and Block Size
	2.5.1.4. Partition Design by Clock Domain and Timing Criticality
	2.5.1.5. Consider What Is Changing

	2.5.2. Design Partition Guidelines
	2.5.2.1. Register Partition Inputs and Outputs
	2.5.2.2. Minimize Cross-Partition-Boundary I/O
	2.5.2.3. Examine the Need for Logic Optimization Across Partitions
	2.5.2.3.1. Keep Logic in the Same Partition for Optimization and Merging
	Example—Combinational Logic Path
	Example—Fitter Merging

	2.5.2.3.2. Merging PLLs and Transceivers (GXB)

	2.5.2.4. Keep Constants in the Same Partition as Logic
	2.5.2.4.1. Example—Constants in Merged Partitions

	2.5.2.5. Avoid Signals That Drive Multiple Partition I/O or Connect I/O Together
	2.5.2.5.1. Example—Single Signal Driving More Than One Port

	2.5.2.6. Invert Clocks in Destination Partitions
	2.5.2.6.1. Example—Clock Signal Inversion

	2.5.2.7. Connect I/O Pin Directly to I/O Register for Packing Across Partition Boundaries
	2.5.2.7.1. Example 1—Output Register in Partition Feeding Multiple Output Pins
	2.5.2.7.2. Example 2—Input Register in Partition Fed by an Inverted Input Pin or Output Register in Partition Feeding an Inverted Output Pin

	2.5.2.8. Do Not Use Internal Tri-States
	2.5.2.9. Include All Tri-State and Enable Logic in the Same Partition
	2.5.2.10. Summary of Guidelines Related to Logic Optimization Across Partitions

	2.5.3. Consider a Cascaded Reset Structure
	2.5.4. Design Partition Guidelines for Third-Party IP Delivery
	2.5.4.1. Allocate Logic Resources
	2.5.4.2. Allocate Global Routing Signals and Clock Networks if Required
	2.5.4.3. Assign Virtual Pins
	2.5.4.4. Perform Timing Budgeting if Required
	2.5.4.5. Drive Clocks Directly
	2.5.4.6. Recreate PLLs for Lower-Level Partitions if Required

	2.6. Checking Partition Quality
	2.6.1. Incremental Compilation Advisor
	2.6.2. Design Partition Planner
	2.6.3. Viewing Design Partition Planner and Floorplan Side-by-Side
	2.6.4. Partition Statistics Report
	2.6.5. Report Partition Timing in the Timing Analyzer
	2.6.6. Check if Partition Assignments Impact the Quality of Results

	2.7. Including SDC Constraints from Lower-Level Partitions for Third-Party IP Delivery
	2.7.1. Creating an .sdc File with Project-Wide Constraints
	2.7.1.1. Example Step 1—Project Lead Produces .sdc with Project-Wide Constraints for Lower-Level Partitions

	2.7.2. Creating an .sdc with Partition-Specific Constraints
	2.7.2.1. Example Step 2—Partition Designer Creates .sdc with Partition-Specific Constraints

	2.7.3. Consolidating the .sdc in the Top-Level Design
	2.7.3.1. Example Step 3—Project Lead Performs Final Timing Analysis and Sign-off

	2.8. Introduction to Design Floorplans
	2.8.1. The Difference between Logical Partitions and Physical Regions
	2.8.2. Why Create a Floorplan?
	2.8.3. When to Create a Floorplan
	2.8.3.1. Early Floorplan
	2.8.3.2. Late Floorplan

	2.9. Design Floorplan Placement Guidelines
	2.9.1. Flow for Creating a Floorplan
	2.9.2. Assigning Partitions to LogicLock Regions
	2.9.3. How to Size and Place Regions
	2.9.4. Modifying Region Size and Origin
	2.9.5. I/O Connections
	2.9.6. LogicLock Resource Exclusions
	2.9.6.1. Creating Floorplan Location Assignments With Tcl Commands—Excluding or Filtering Certain Device Elements (Such as RAM or DSP Blocks)

	2.9.7. Creating Non-Rectangular Regions

	2.10. Checking Floorplan Quality
	2.10.1. Incremental Compilation Advisor
	2.10.2. LogicLock Region Resource Estimates
	2.10.3. LogicLock Region Properties Statistics Report
	2.10.4. Locate the Intel Quartus Prime Timing Analyzer Path in the Chip Planner
	2.10.5. Inter-Region Connection Bundles
	2.10.6. Routing Utilization
	2.10.7. Ensure Floorplan Assignments Do Not Significantly Impact Quality of Results

	2.11. Recommended Design Flows and Application Examples
	2.11.1. Create a Floorplan for Major Design Blocks
	2.11.2. Create a Floorplan Assignment for One Design Block with Difficult Timing
	2.11.3. Create a Floorplan as the Project Lead in a Team-Based Flow

	2.12. Document Revision History

	3. Intel Quartus Prime Integrated Synthesis
	3.1. Design Flow
	3.1.1. Intel Quartus Prime Integrated Synthesis Design and Compilation Flow
	3.1.1.1. Factors Affecting Compilation Results

	3.2. Language Support
	3.2.1. Verilog and SystemVerilog Synthesis Support
	3.2.1.1. Verilog HDL Configuration
	3.2.1.1.1. Configuration Syntax
	3.2.1.1.2. Hierarchical Design Configurations
	3.2.1.1.3. Suffix :config

	3.2.1.2. SystemVerilog Support
	3.2.1.3. Initial Constructs and Memory System Tasks
	3.2.1.4. Verilog HDL Macros
	3.2.1.4.1. Setting a Verilog HDL Macro Default Value in the Intel Quartus Prime Software
	3.2.1.4.2. Setting a Verilog HDL Macro Default Value on the Command Line

	3.2.2. VHDL Synthesis Support
	3.2.2.1. VHDL Standard Libraries and Packages
	3.2.2.2. VHDL wait Constructs

	3.2.3. AHDL Support
	3.2.4. Schematic Design Entry Support
	3.2.5. State Machine Editor
	3.2.6. Design Libraries
	3.2.6.1. Specifying a Destination Library Name in the Settings Dialog Box
	3.2.6.2. Specifying a Destination Library Name in the Intel Quartus Prime Settings File or with Tcl
	3.2.6.3. Specifying a Destination Library Name in a VHDL File
	3.2.6.4. Mapping a VHDL Instance to an Entity in a Specific Library
	3.2.6.4.1. Direct Entity Instantiation
	3.2.6.4.2. Component Instantiation—Explicit Binding Instantiation
	3.2.6.4.3. Component Instantiation—Default Binding

	3.2.7. Using Parameters/Generics
	3.2.7.1. Setting Default Parameter Values and BDF Instance Parameter Values
	3.2.7.2. Passing Parameters Between Two Design Languages

	3.3. Incremental Compilation
	3.3.1. Partitions for Preserving Hierarchical Boundaries
	3.3.2. Parallel Synthesis
	3.3.3. Intel Quartus Prime Exported Partition File as Source

	3.4. Intel Quartus Prime Synthesis Options
	3.4.1. Setting Synthesis Options
	3.4.1.1. Intel Quartus Prime Logic Options
	3.4.1.2. Synthesis Attributes
	3.4.1.2.1. Synthesis Attributes in Verilog-1995
	3.4.1.2.2. Synthesis Attributes in Verilog-2001
	3.4.1.2.3. Synthesis Attributes in VHDL

	3.4.1.3. Synthesis Directives

	3.4.2. Optimization Technique
	3.4.3. Auto Gated Clock Conversion
	3.4.4. Enabling Timing-Driven Synthesis
	3.4.5. SDC Constraint Protection
	3.4.6. PowerPlay Power Optimization
	3.4.7. Limiting Resource Usage in Partitions
	3.4.7.1. Creating LogicLock Regions
	3.4.7.2. Using Assignments to Limit the Number of RAM and DSP Blocks

	3.4.8. Restructure Multiplexers
	3.4.9. Synthesis Effort
	3.4.10. Fitter Intial Placement Seed
	3.4.11. State Machine Processing
	3.4.11.1. Manually Specifying State Assignments Using the syn_encoding Attribute
	3.4.11.2. Manually Specifying Enumerated Types Using the enum_encoding Attribute

	3.4.12. Safe State Machine
	3.4.13. Power-Up Level
	3.4.13.1. Inferred Power-Up Levels

	3.4.14. Power-Up Don’t Care
	3.4.15. Remove Duplicate Registers
	3.4.16. Preserve Registers
	3.4.17. Disable Register Merging/Don’t Merge Register
	3.4.18. Noprune Synthesis Attribute/Preserve Fan-out Free Register Node
	3.4.19. Keep Combinational Node/Implement as Output of Logic Cell
	3.4.20. Disabling Synthesis Netlist Optimizations with dont_retime Attribute
	3.4.21. Disabling Synthesis Netlist Optimizations with dont_replicate Attribute
	3.4.22. Maximum Fan-Out
	3.4.23. Controlling Clock Enable Signals with Auto Clock Enable Replacement and direct_enable

	3.5. Inferring Multiplier, DSP, and Memory Functions from HDL Code
	3.5.1. Multiply-Accumulators and Multiply-Adders
	3.5.2. Shift Registers
	3.5.3. RAM and ROM
	3.5.4. Resource Aware RAM, ROM, and Shift-Register Inference
	3.5.5. Auto RAM to Logic Cell Conversion
	3.5.6. RAM Style and ROM Style—for Inferred Memory
	3.5.7. RAM Style Attribute—For Shift Registers Inference
	3.5.8. Disabling Add Pass-Through Logic to Inferred RAMs no_rw_check Attribute
	3.5.9. RAM Initialization File—for Inferred Memory
	3.5.10. Multiplier Style—for Inferred Multipliers
	3.5.11. Full Case Attribute
	3.5.12. Parallel Case
	3.5.13. Translate Off and On / Synthesis Off and On
	3.5.14. Ignore translate_off and synthesis_off Directives
	3.5.15. Read Comments as HDL
	3.5.16. Use I/O Flipflops
	3.5.17. Specifying Pin Locations with chip_pin
	3.5.18. Using altera_attribute to Set Intel Quartus Prime Logic Options

	3.6. Analyzing Synthesis Results
	3.6.1. Analysis & Synthesis Section of the Compilation Report
	3.6.2. Project Navigator
	3.6.2.1. Upgrade IP Components Dialog Box

	3.7. Analyzing and Controlling Synthesis Messages
	3.7.1. Intel Quartus Prime Messages
	3.7.2. VHDL and Verilog HDL Messages
	3.7.2.1. Setting the HDL Message Level
	3.7.2.2. Enabling or Disabling Specific HDL Messages by Module/Entity

	3.8. Node-Naming Conventions in Intel Quartus Prime Integrated Synthesis
	3.8.1. Hierarchical Node-Naming Conventions
	3.8.2. Node-Naming Conventions for Registers (DFF or D Flipflop Atoms)
	3.8.3. Register Changes During Synthesis
	3.8.3.1. Synthesis and Fitting Optimizations
	3.8.3.2. State Machines
	3.8.3.3. Inferred Adder-Subtractors, Shift Registers, Memory, and DSP Functions
	3.8.3.4. Packed Input and Output Registers of RAM and DSP Blocks

	3.8.4. Preserving Register Names
	3.8.5. Node-Naming Conventions for Combinational Logic Cells
	3.8.6. Preserving Combinational Logic Names

	3.9. Scripting Support
	3.9.1. Adding an HDL File to a Project and Setting the HDL Version
	3.9.2. Assigning a Pin
	3.9.3. Creating Design Partitions for Incremental Compilation

	3.10. Document Revision History

	4. Reducing Compilation Time
	4.1. Compilation Time Advisor
	4.2. Strategies to Reduce the Overall Compilation Time
	4.2.1. Running Rapid Recompile
	4.2.2. Enabling Multi-Processor Compilation
	4.2.3. Using Incremental Compilation
	4.2.4. Using Block-Based Compilation

	4.3. Reducing Synthesis Time and Synthesis Netlist Optimization Time
	4.3.1. Settings to Reduce Synthesis Time and Synthesis Netlist Optimization Time
	4.3.2. Use Appropriate Coding Style to Reduce Synthesis Time

	4.4. Reducing Placement Time
	4.4.1. Fitter Effort Setting
	4.4.2. Placement Effort Multiplier Settings
	4.4.3. Physical Synthesis Effort Settings
	4.4.4. Preserving Placement with Incremental Compilation

	4.5. Reducing Routing Time
	4.5.1. Identifying Routing Congestion with the Chip Planner
	4.5.1.1. Areas with Routing Congestion
	4.5.1.2. Congestion due to HDL Coding style
	4.5.1.3. Preserving Routing with Incremental Compilation

	4.6. Reducing Static Timing Analysis Time
	4.7. Setting Process Priority
	4.8. Reducing Compilation Time Revision History

	A. Intel Quartus Prime Standard Edition User Guides

